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Abstract

The urgent need for effective wildlife monitoring solutions in the face of global

biodiversity loss has resulted in the emergence of conservation technologies such as

passive acoustic monitoring (PAM). While PAM has been extensively used for

marine mammals, birds, and bats, its application to primates is limited. Black‐and‐

white ruffed lemurs (Varecia variegata) are a promising species to test PAM with due

to their distinctive and loud roar‐shrieks. Furthermore, these lemurs are challenging

to monitor via traditional methods due to their fragmented and often unpredictable

distribution in Madagascar's dense eastern rainforests. Our goal in this study was to

develop a machine learning pipeline for automated call detection from PAM data,

compare the effectiveness of PAM versus in‐person observations, and investigate

diel patterns in lemur vocal behavior. We did this study at Mangevo, Ranomafana

National Park by concurrently conducting focal follows and deploying autonomous

recorders in May–July 2019. We used transfer learning to build a convolutional

neural network (optimized for recall) that automated the detection of lemur calls

(57‐h runtime; recall = 0.94, F1 = 0.70). We found that PAM outperformed in‐person
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observations, saving time, money, and labor while also providing re‐analyzable data.

Using PAM yielded novel insights into V. variegata diel vocal patterns; we present

the first published evidence of nocturnal calling. We developed a graphic user

interface and open‐sourced data and code, to serve as a resource for primatologists

interested in implementing PAM and machine learning. By leveraging the potential

of this pipeline, we can address the urgent need for effective primate population

surveys to inform conservation strategies.
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1 | INTRODUCTION

Given the current biodiversity loss crisis, there is a growing need for cost‐

effective and scalable wildlife monitoring solutions. Passive acoustic

monitoring (PAM) is an increasingly popular tool in which specialized

sound recorders are deployed across a study area to record sound

autonomously using specified configuration parameters (Blumstein

et al., 2011; Gibb et al., 2019; Piel et al. 2021). These recorders can

capture species‐specific calls, which can later be modeled to estimate

species presence, occupancy, and distribution (Gibb et al., 2019; Sugai

et al., 2019). PAM can detect some species up to 10x more frequently

than camera‐traps due to the omnidirectional nature of microphones and

resultant wider detection area (Crunchant et al., 2020; Enari et al., 2019),

and can be as accurate and efficient as human observation (Boullhesen

et al., 2021; Digby et al., 2013; Leach et al., 2016), if not more so (Castro

et al., 2019; Darras et al., 2019; Hoefer et al., 2023; Melo et al., 2021).

PAM is especially powerful because it is noninvasive, cost‐efficient, and

able to yield long‐term data that can be objectively and repeatedly

analyzed (Blumstein et al., 2011; Gibb et al., 2019; Kvsn et al., 2020).

PAM and automated detection models have a long history of use

with marine mammals, making this taxonomic subfield a pioneer in PAM

research (Bittle & Duncan, 2013; Mellinger et al., 2007; Zimmer, 2011).

However, the use of PAM with nonflying terrestrial mammals has been

comparatively less frequent, accounting for only 6% of studies in a

recent meta‐analysis (28 of 460; Sugai et al., 2019). More recently,

however, PAM has become widely employed for birds (Zhong

et al., 2021), bats (Paumen et al., 2022), and anurans (Melo et al., 2021).

Nevertheless, PAM remains underrepresented in the primatology

literature (Table 1). This is particularly surprising, given that the Order

contains several highly vocal taxa (Table 1). Among these are

Madagascar's lemurs, considered the world's most endangered mam-

mals (Schwitzer et al., 2014). Remarkably, despite Madagascar's status

as a biodiversity hotspot and the country's distressing loss of half its

forests within the last six decades (Vieilledent et al., 2018), there has

been a notable lack of PAM studies in this region. Given the potential

contributions of PAM toward conservation monitoring efforts in

Madagascar, our study seeks to address this gap by investigating the

potential of PAM to survey lemur populations and inform conservation

initiatives.

The conservation of the Critically Endangered black‐and‐white

ruffed lemurs (Varecia variegata; hereafter ruffed lemurs) is especially

important given their vital roles as seed dispersers and pollinators;

some fruiting trees rely entirely on ruffed lemurs as their sole

dispersers (Britt, 2000; Dew & Wright, 1998; Federman et al., 2016;

Moses & Semple, 2011). Additionally, ruffed lemurs are very sensitive

to disturbed habitat and can forego breeding up to 4 or more years

when environmental conditions are not suitable (Baden et al., 2013;

Ratsimbazafy, 2002; Vasey & Borgerson, 2009). Ruffed lemurs are

therefore both indicators and determinants of rainforest health.

Ruffed lemurs are limited to fragments of the once‐continuous

eastern Malagasy rainforests (Louis et al., 2020). They are high‐

canopy specialists (Beeby & Baden, 2021) and can be difficult for

observers on the ground to find and continuously track. Ruffed

lemurs' patchy distribution throughout a mosaic of forest fragments

makes it difficult to accurately assess population distribution or size

(Irwin et al., 2005; Louis et al., 2020; Morelli et al., 2020). PAM is

particularly useful in such dense, montane forest habitats because

it enables animal detection in areas with limited visibility and

arduous topography (Gibb et al., 2019; Kalan et al., 2015;

Thompson et al., 2010).

Ruffed lemurs emit distinct choruses (roar‐shrieks and barks) that

make them an ideal candidate species for PAM (Batist et al., 2022;

Pereira et al., 1988; Petter & Charles‐Dominique, 1979; Turner &

Harrenstien, 1985). Roar‐shrieks and barks are considered ruffed lemur

long calls and travel the furthest, making them effective with acoustic

monitoring (Batist et al., 2022, 2023; Pereira et al., 1988; Petter &

Charles‐Dominique, 1979; Turner & Harrenstien, 1985). Acoustic

features of these calls are listed in Table 2 and spectrograms are

provided in Figure 1 (though from a directional microphone during

active acoustic monitoring). These calls are given frequently, but not at

any particular time of day (Batist et al., 2022; Geissmann &

Mutschler, 2006). They are multisyllabic contagious choruses, meaning

that once one individual within a subgroup begins calling, the rest of the

subgroup joins in (Pereira et al., 1988; Turner & Harrenstien, 1985).

Roar‐shrieks in one subgroup are often answered by other neighboring,

out‐of‐sight subgroups as well. The exact function of roar‐shrieks is

debated, but it seems to be a sort of roll‐call among individuals following

potentially stressful situations (Batist et al., 2022; Pereira et al., 1988;
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Petter & Charles‐Dominique, 1979; Turner & Harrenstien, 1985).

Because of the strong fission‐fusion dynamics exhibited by ruffed

lemurs, roar‐shrieks appear to maintain social cohesion within a

community that is split up into different subgroups without visual

contact (Batist et al., 2022; Macedonia & Taylor, 1985; Petter &

Charles‐Dominique, 1979; Turner & Harrenstien, 1985). Barks have

been previously described as alarm calls for aerial or terrestrial predators

(Macedonia, 1990; Pereira et al., 1988; Petter & Charles‐

Dominique, 1979; Turner & Harrenstien, 1985).

Our goal for this study was to establish a comprehensive PAM

workflow for ruffed lemur loud calls in southeastern Madagascar,

that could also serve as a guide for other primatologists. And beyond

data collection, we also aimed to develop a deep learning analytical

pipeline. PAM has been transformed by the “big data” revolution,

recent advances in artificial intelligence, and development of highly

efficient and potent machine learning (ML) models (Dufourq

et al., 2022; Stowell, 2022; Tuia et al., 2022). Deep learning models

such as convolutional neural networks (CNNs), have proven to be

useful in creating passive acoustic monitoring classifiers

(Stowell, 2022), and have successfully been used in diverse species

including primates (Table 1; Dufourq et al., 2021; Ruan et al., 2022),

bats (Chen et al., 2020; Mac Aodha et al., 2018; Roemer et al., 2021),

whales (Bermant et al., 2019), and birds (Grill & Schlüter, 2017; Gupta

et al., 2021; Kahl et al., 2021; Lauha et al., 2022). In these models, a

computer “trains” itself to recognize species‐specific calls by

extracting salient features from a reference data set (here, spectro-

grams) and then classifies segments from other test recordings based

on their similarity to those features. This innovative automated

approach allows thousands of hours of recordings to be analyzed

efficiently rather than via labor‐intensive manual processing

(Stowell, 2022; Tuia et al., 2022). The ruffed lemur workflow

described herein is among the first studies to use an integrated

PAM and ML pipeline with any lemur species (see also Ravaglia

et al., 2023). Our study had three main objectives. First, we aimed toT
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TABLE 2 Acoustic features of the black‐and‐white ruffed lemur
roar‐shriek and bark in Mangevo, Ranomafana National Park,
Madagascar (adapted from Batist et al., 2023).

Acoustic feature (units) Roar‐shriek Bark

Mean frequency (kHz) 2.84 ± 0.47 1.78 ± 0.50

Inter‐quartile range (frequency; kHz) 2.43 ± 0.58 1.40 ± 0.61

Mean dominant frequency (kHz) 1.28 ± 0.21 1.12 ± 0.15

Dominant frequency range (kHz) 11.68 ± 4.61 4.86 ± 2.45

Modulation index (n/a) 72.11 ± 32.59 56.98 ± 32.21

Call duration (s) 22.31 ± 16.15 4.65 ± 1.27

Inter‐quartile range (time; s) 10.32 ± 8.35 1.82 ± 0.61

Avg. # of syllables (n/a) 72.18 ± 59.97 6.18 ± 4.46

Spectral skew (n/a) 3.99 ± 0.67 4.68 ± 1.32

Shannon entropy (0–1 scale) 0.91 ± 0.01 0.94 ± 0.02
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develop a machine learning pipeline for automated detection of

ruffed lemur roar‐shrieks, as a proof‐of‐concept for future scaled‐up

projects. Second, we wanted to compare roar‐shriek detections from

PAM and from in‐person observations (focal follows) to demonstrate

its effectiveness. To further emphasize the value in PAM data, our

final aim was to assess diel patterns in ruffed lemur calling behavior

and determine if ruffed lemurs exhibited nocturnal vocal activity (as

PAM devices ran continuously). Based on previous anecdotal

accounts, we predicted that ruffed lemurs would call at night, but

to a lesser extent than during the day.

2 | MATERIALS AND METHODS

2.1 | Ethical note

The research herein adheres to the American Society of Primatolo-

gists' Principles for the Ethical Treatment of Primates and was approved

by the Hunger College Institutional Animal Care and Use Committee

(IACUC; protocol no. AB‐2/22). This project was approved and

permitted by Madagascar National Parks and the Malagasy Director-

ate of Protected Areas and Ecosystems (permit no. 109/19/MEDD/

SG/DGF/DSAP/SCB.Re).

2.1.1 | Data collection

We conducted fieldwork at Mangevo (21.3833S, 47.4667E), a

remote, pristine‐forest site in Ranomafana National Park (RNP),

southeastern Madagascar, from May–July 2019 (Supporting Infor-

mation S1: Figure 1). Mangevo is characterized as a mid‐elevation

tropical rainforest (800–1100m; Wright et al., 2012). Mangevo is the

site of the long‐term Ranomafana Ruffed Lemur Project (Baden

et al., 2016). There is a habituated ruffed lemur community at

Mangevo that, at the time of the study, contained 31 radio‐collared

individuals (for details on collaring see Glander, 1993) during the

majority of the study (two were killed by fossa, Cryptoprocta ferox,

in July).

F IGURE 1 Spectrograms of black‐and‐white ruffed lemur bark (a) and roar‐shriek (b) from active acoustic monitoring (directional
microphone) in Mangevo, Ranomafana National Park, Madagascar.

BATIST ET AL. | 5 of 18
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For passive acoustic monitoring, we used four autonomous

recording units (ARUs): two SongMeter SM4s (hereafter SM; Wildlife

Acoustics) and two Swifts (Cornell Yang Center for Conservation

Bioacoustics). Recorders were placed within the core areas of known

subgroups, with a minimum distance of 300m between each device

(Supporting Information S1: Figure 2). We opted for this distance

between each recorder for a number of reasons: (1) Mangevo is a

dense, montane rainforest so sound attenuation was expected to be

very high due to topography and vegetation; (2) roar‐shrieks are

highly variable (in bandwidth, duration, amplitude) and amplitude is

affected by how many lemurs are calling simultaneously (can be 2–7

individuals; Batist et al., 2022); and (3) to account for variation in

microphone sensitivity across recorder types. Placing the recorders

relatively close to one another was beneficial as it ensured that many

calls were recorded despite such variability in call amplitude and

recorder sensitivity (and while still removing potential pseudo‐

replicates; see below for further detail). The Swifts were built into

a Pelican case (the “rugged” version), and the SMs were placed into

the Wildlife Acoustics metal housing. Each recorder was placed as

high in a tree as was safely possible (~2–3m), microphone oriented

sidewise, and secured with cable locks. This is high enough to avoid

any ground interference, but still allows to arboreal species' calls

because the microphone is omnidirectional (in both horizontal and

vertical space). We used NiMH rechargeable “D” batteries (brand:

EBL); the Swifts can hold nine D batteries while the SMs can hold

four. We used SanDisk ExtremePro SD cards in both devices. The SM

and Swift recorders had sampling rates of 48 and 32 kHz respectively

and recorded in 16‐bit mono format. The microphone sensitivity for

SMs is −35 and −44 dB for Swifts (taken from manufacturer spec

sheets). We used a gain of +16 dB for SMs and +20 dB for Swifts. We

used an increased gain for the Swift to better standardize the

recording specifications given the higher sensitivity of the SM. The

different devices did not have matching sample rate settings (due to

differences in available settings between Swifts and SMs), but we

downsampled all recordings in a preprocessing step to standardize

them (see below). ARUs were scheduled to run continuously, 24 h a

day. We checked each device once every 2–3 weeks to ensure

proper functionality and change out batteries and SD cards when

necessary. Due to the remoteness of the sites and requirements of

the focal follow sampling (see below), we were not able to check all

devices on a standardized schedule. In some cases, devices had

stopped recording due to battery or SD card failure before we could

replace them in time. In total across all recorders, we collected

approximately 2300 h of recordings across 55 days.

Concurrently with the passive acoustic monitoring, we also

conducted 50 full‐day focal follows (Altmann, 1974) of radio‐collared

individuals, located daily via radiotelemetry (375 observation hours).

The exact start time of each focal was variable depending on how

long it took to locate the focal individual at the beginning of each

sampling period. We targeted each individual as a focal animal at least

once (and maximum 3x) over the study period to avoid sampling bias.

The focal was never the same individual on consecutive days.

We recorded all occurrences (Altmann, 1974) of ruffed lemur

vocalizations (i.e., not just those given by the focal animal), including

calls heard from out‐of‐sight subgroups. Where possible, we

recorded a GPS point and caller(s) demographic information (e.g.,

individual ID, sex), for each vocalization (sometimes not possible if

individuals were not visible or on the move). As mentioned

previously, we focused on only roar‐shrieks and barks (sensu Batist

et al., 2022) for this specific study comparing passive acoustic

monitoring and in‐person observations.

2.1.2 | Data analysis—Annotation of the acoustic
recordings

Initially, we had 2300 h of unlabeled audio data recorded over multiple

files, where the files were either 20 (SM) or 40–60 (Swift) min in

duration. We began by randomly selecting audio files to manually

annotate using Sonic Visualiser (Cannam et al., 2010) via visual

inspection of the spectrograms and simultaneously listening to the

audio. We annotated acoustic events which had ruffed lemur roar

shrieks as presence events, and other sounds as absence events. The

manual annotations were conducted independently by the three

authors: C. B., E. D., and L. J. Subsequently, a collaborative verification

was performed to ensure consensus among the three annotators,

resulting in the final annotations. To annotate a lemur roar, labeled as

presence, or a soundscape with or without other sounds, labeled as

absence, we drew bounding boxes around the specific event as depicted

in Figure 2, allowing us to record the start and end time of each window.

While accurate annotation of the start and end times was

imperative, we did not retain the lower and upper frequency

parameters of the bounding boxes due to the utilization of a

predefined frequency range (0.5–4 kHz). Our findings and prior

research (Dufourq et al., 2021, 2022; Jeantet & Dufourq, 2023; Kahl

et al., 2021; Ruan et al., 2022) revealed that it was not necessary to

include the full spectrogram, and that improved performance was

obtained when narrowing the range. Specifically, our knowledge that

ruffed lemurs vocalize within the 1–2 kHz range prompted us to

define this range between 0.5 and 4 kHz. This decision aimed to

guide the model's attention to the frequency range containing lemur

vocalizations, allowing it to discern distinctive features of lemur calls.

Additionally, this range was chosen to facilitate the model's learning

about other vocalizations that might overlap with lemur sounds

(which explains why we extended the range slightly beyond 2 kHz).

Furthermore, we also noticed the presence of harmonics extending

up to 4 kHz.

To train the model to identify the lemur calls and distinguish

them from the other sound present in the soundscape, it is crucial to

train the model to identify biophony, geophony, and anthropophony

sounds, in addition to ruffed lemur calls. However, using the entire

absence sequence of the audio files to create this absence class

would generate a significant amount of data and increase the

processing time to train the detection model. Although randomly

selecting a fixed number of absence windows is an option, our

research has shown that this approach would increase the number of
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false positives due to the low diversity of selected sounds from

random selection. Most of the time, the audio files contain

soundscape sounds without any particular sound of interest. Sounds

of interest that overlap with the range of lemur shrieks are more

spontaneous, and therefore more difficult to randomly select. By

manually identifying other sounds, we create a more diverse set of

examples for the absence class which enables the algorithm to

become more robust to false positives. Thus, to ensure that relevant

sounds are not missed and to keep the data set computationally

feasible, we manually annotated windows containing these sounds

(as detailed in Dufourq et al., 2021).

2.1.3 | Data analysis—Preprocessing of acoustic
recordings

To standardize the sampling rates (32 kHz for the Swifts and

48 kHz for the SM), we first applied a low‐pass filter to each

recording with a cutoff rate of 4 kHz and subsampled them to

obtain a new sampling rate of 9.6 kHz. Based on the manual

annotations, we extracted labeled windows and divided them into

audio segments through a sliding window of 4 s length with an

overlap of 1 s. The segments were then converted into mel‐

frequency spectrograms using a Hann analysis window size of

107 ms (1024 samples) with a hop size of 27 ms (256 samples) and

128 mel‐frequency. This resulted in spectrogram images of size

128 × 151. We thus created a binary classification data set

(presence and absence of lemur vocalization).

2.1.4 | Data analysis—Deep learning model

Deep learning refers to algorithms, commonly called deep neural

networks, which possess the capability to autonomously identify

complex and highly distinctive patterns within data. Deep learning

algorithms are sequences of processing layers that perform a

combination of linear and nonlinear mathematical operations. These

interconnected layers encompass multiple model weights, repre-

sented as real‐valued numbers (such as −0.2 or 1.7), which undergo

optimization throughout the training phase of the model. More

precisely, for a classification problem, the model is first generated

with random initial weights and then provided with a set of annotated

data during its training phase. During this training phase, the weights

are iteratively adjusted to optimize the network's ability to generate

accurate target outputs for a given input. By increasing the number of

layers, the network is able to learn an abstract representation

between the input and output. The layers closer to the input would

be referred to as “earlier layers” and those closer to the output as

“later layers” which learn a much more abstract representation of the

input due to the chained operations of consecutive layers. Deep

neural networks applied to image classification tasks are typically

referred to as convolutional neural networks (CNNs). These networks

contain convolutional layers which have the ability to learn visual

features from the input.

A nuanced aspect of deep learning emerges from the observation

that as a model grows in complexity—defined by an increasing

number of layers and consequently weights—it demands a more

extensive training data set. An undersized training data set frequently

F IGURE 2 Example of a bounding box drawn around a ruffed lemur roar‐shriek in Sonic Visualiser.
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results in overfitting issues, wherein the model performs well on the

training data but poorly with new data, due to becoming excessively

tailored to the training data's specifics. Hence, the use of available

robust and large size deep learning algorithms, is often limited in

ecology by the scarcity of labeled data. But recently, transfer learning

has shown promising results in mitigating this challenge in bio-

acoustics (Bravo Sanchez et al., 2021; Dufourq et al., 2022; Zhong

et al., 2020).

Within the context of CNNs, image and audio classification,

transfer learning consists of using an existing model (say model M),

that has already been trained to perform a task (say task A) similar to

the one expected (say task B). Generally, task A will have a

corresponding larger data set than task B (Dufourq et al., 2022;

Zhong et al., 2020). When implementing transfer learning, one

obtains the weights from the existing modelM, and these weights are

used as the starting point (as opposed to randomly initialized weights)

before the training of task B. At this stage, the model is modified so

that it can be adapted to task B. The earlier layers are usually kept as

is, and they are “frozen.” This implies that the frozen weights in earlier

layers are not updated during training. These layers are sometimes

referred to as the feature extractor, as these layers have already been

trained to learn visual features from images. The weights in later

layers of M are not frozen, and thus those weights can be optimized.

The process of updating the weights in the later layers is known as

“fine‐tuning.” These later layers are known for acquiring the skill to

leverage the visual features for classification in a particular context.

Through transfer learning, we harness the model's overarching

capability to extract input information and exclusively fine‐tune the

final layers to adapt it to our specific scenario. In this study we used

transfer learning since we did not have a large number of annotated

lemur examples, and thus, task B would be a binary classification

problem for lemur vocalizations.

The ResNet152V2 architecture (He et al., 2016) is a well‐known

CNN which has successfully been used in various application areas.

Typically, this network is used within the context of transfer learning

and has been pre‐trained on ImageNet, a database comprising over

14 million human‐annotated images (Deng et al., 2009). This

architecture has produced good classification performance on various

PAM classification tasks (Bergler et al., 2022; Dufourq et al., 2022).

More specifically, we downloaded the pretrained ResNet152V2

ImageNet weights and froze the feature extractor (all convolution

and pooling layers which are used to extract visual features from the

input). The output of the convolutional layers was flattened and we

added a fully connected layer with 2 units and a softmax activation.

Softmax activation normalizes the output of a network into the

probability that the spectrogram belongs to each class.

The final class (presence or absence) was assigned to the class with

the highest probability. The weights in the fully connected layer were

randomly initialized. There were thus 58,331,648 nontrainable weights

in the feature extractor, and 81,922 trainable weights in the fully

connected layer. This CNN expects a three‐channel input image, and

thus each single channel spectrogram was manipulated into three

channels in the same manner described in Dufourq et al. (2022) by

creating two additional normalized spectrograms using exponents of the

original spectrograms. Figure 3 provides an overview of our approach.

2.1.5 | Data analysis—Training and evaluation

We randomly split the labeled audio files into training (70%) and

validation (30%) data sets. Entire audio files were assigned to either

the training or validation set, that is, we did not assign a portion of an

audio file to training and another portion to validation. Our

preliminary findings revealed that we obtained various false positives

using the model trained on the initial training data set. Therefore, we

iteratively augmented the training data set by incorporating

additional files from the unlabeled set until the validation perform-

ance converged and no longer improved. To include these unlabeled

files, we applied the CNN to approximately 10 of them (the number

of files added in each iteration varied slightly), and manually validated

the predictions. Once validated, these files were added to the training

data set. The false positives, mostly corresponding to biophony and

anthropophony, were manually labeled as the absence class, while

the identified lemur calls were labeled as the presence class.

Subsequently, the CNN was retrained using these newly annotated

examples. This was repeated three times until the performance on

the validation set was no longer improved. In the end, 195 files

(114 h) were annotated, with a training data set of 139 files

(approximately 84 h, 51 files from the SM recorder and 88 from

the Swift recorders), and a validation data set of 56 files

(approximately 30 h, 26 files from the SM recorder and 30 from

the Swift recorders). We obtained 4856 presence and 6979 absence

windows for the training data set.

The validation data set was created from 56 audio files (length 20,

40, or 60min) and had 119 presence events where lemur calls were

manually detected. The remainder of these audio files consisted of

absence events (approximately 30 h of absence corresponding to 27,326

absence windows). We do not consider absence windows for the

validation data as we applied our model to each of the 56 validation audio

files as though this were a real‐world case‐study. To determine the overall

model performance, and similarly to a real‐word case study, we applied

the model on the entirety of each validation file using a sliding window.

For each file, we started at the beginning, and extracted a 4 second

window (seconds 0–4). We created a spectrogram (see above), and the

model was then applied to that spectrogram where a prediction was

generated. We then slid to seconds 1–5, created a spectrogram, and

predicted again. This was repeated until the end of the file was reached.

We then postprocessed the files (as detailed in Dufourq et al., 2021)

to obtain the start and end times for each detected calling bout. We

compared predicted calling bouts to the annotated calls and calculated a

confusion matrix. Based on the confusion matrix, we calculated the

precision, recall, and accuracy of the model. There was an inherent

trade‐off between precision (of all presence predictions, how many

were actually presence) and recall (of all presence events, how many

were actually detected). We developed the model with a focus on

optimizing for a high recall, as the threat of potentially missing a call (and
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stating that site lacks ruffed lemurs) was higher than the expense of

more false positives to manually process.

2.1.6 | Data analysis—Application on the unlabeled
data set

To evaluate the performance of the CNN on the unlabeled data set, we

applied the model on the entirety of each unlabeled file using the same

approach described above (2300h, ~900GB). All the predictions were

manually verified. The CNN was trained on an Nvidia RTX A4000 GPU

(8GB RAM) and was implemented in Tensorflow 2 (Abadi, 2016) and

Python 3. Audio processing was done using Librosa (McFee et al., 2015)

and was executed on a computer running Ubuntu 22.04.2 with 64GB

RAM. We used the Adam optimizer, the categorical cross entropy loss

function, a batch size of 32, and a learning rate of 0.000001. The CNN

was trained for 5 epochs and took 50 s to train. These hyper‐parameters

were obtained via preliminary experiments and by considering previous

research that used transfer learning (Dufourq et al., 2022). The same

hardware was used when we applied the model on the unlabeled

data set.

2.1.7 | Data analysis—Diel patterns and methods
comparisons

Upon completing our CNN pipeline, we qualitatively compared

passive (PAM) and active (in‐person observations) acoustic

F IGURE 3 Illustrating how transfer learning was used to classify between lemur and nonlemur vocalizations. We adapted ResNet152V2 by
freezing the feature extractor, and then adding a fully connected layer with 2 softmax units (presence or absence). The unlabeled data set was
used to incrementally supplement the training data set until we obtained 139 training files. The model was trained on the 139 files, and
evaluated on 56 audio files.
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monitoring with respect to the number of ruffed lemur calls detected,

total cost, temporal coverage, spatial coverage, and other miscella-

neous requirements in the context of this study. We assessed the

number of calls across the days, and additionally, we compared the

number of calls across hours of the day to assess any diel patterns in

ruffed lemur vocal activity. To remove any possible pseudo‐

replications (the same call picked up on different recorders), we

filtered out calls that occurred less than 3 s apart at multiple

recorders (n = 670). The study period encompassed the ruffed lemur

mating period (only a few days/year as ruffed lemurs, like most lemur

species, are highly seasonal breeders; Rasmussen, 1985), so we were

particularly interested in assessing vocal activity rates during this

time. Because of the low sample size (only three recorders, short

sample period), we just report descriptive statistics for vocal activity

and diel patterns.

3 | RESULTS

One of the SMs failed early on in the study, so the data collected (and

presented here) are from the remaining three ARUs (SM, Swift1 [S1],

Swift2 [S2]). On the 56 validation audio files (roughly 38 h, 8.7 GB),

the best CNN model obtained an accuracy of 90.0%, resulted in 89

false positives (roughly 6min), 7 false negatives and 112 true

positives (Table 3 provides a confusion matrix). The model achieved

an F1‐score of 0.7 on the validation set. Thus, on 38 h of data,

approximately 6min would have been wasted on verifying false

positives. It took approximately 18min to predict on all validation

files which includes preprocessing of each file and applying the model

on the windowed spectrograms. On the validation data set, the model

obtained a precision and recall of 55.7% and 94.1% respectively.

We then used this model on the entire unlabeled data set, and

manually validated the model predictions. Using an Nvidia RTX

A4000 and Intel CPU (i7‐11850H) to predict on the entire data set

took 27 h for the SM data, 15 h for S1 and 18 h for S2 (60 h total).

Access to high‐end GPUs is not always feasible, and thus we also

explored the computational effort using just a CPU. A single Swift

audio file (60min) took 149 s to process and an SM file (20min) took

59 s. Therefore, it would have taken about 150 h in total to predict on

the entire data set using a CPU.

After manual validations of the model predictions to determine

false positive and true positive rates, we calculated the precision.

Precision was 87.9% for S1, 91.0% for S2, and 23.0% for SM. We

expected lower precision for SM as it was closer to a river and

(unbeknownst to us) where our campsite leads chopped wood

(further details given in Section 4.1 under Section 4). Across all

recorders, rain was the incorrect sound type most predicted as a

lemur (46.0% of all false positives) followed by wood chopping

(25.0%) and bird calls (13.0%). Rain was the most‐confused sound for

SM and S1, while bird calls were the most‐confused for S2.

To foster accessibility, knowledge‐sharing, and user‐friendly tools,

we developed an open‐source graphic user interface (GUI) which

facilitates the use of the model to detect lemur vocalizations (Supporting

Information S1: Figure 3). While this model has been trained on lemurs,

it could be generalized to and trained on other calling species; similarly,

the GUI is flexible and could be re‐used with different models.

3.1 | PAM versus in‐person observation

PAM resulted in more detected barks and roar‐shrieks (absolutely

and per unit time) and more overall sampling hours than in‐person

observations (Table 4; Figure 4). PAM was also more cost‐effective

and required less time (12 vs. 56 days) and labor to implement

(Table 4). The spatial scale of both methods was fairly limited due to

ruffed lemurs' small home range sizes, and PAM was further affected

by the malfunction of one SM (Baden et al., 2020). But, in‐person

observations will inherently offer greater flexibility in spatial scale as

PAM is restricted to stationary recorders. Beyond data collection,

using the deep learning pipeline significantly decreased the time

needed for data analysis as well (11 weeks for manual processing vs.

2 weeks for deep learning; Table 4).

3.2 | Diel patterns

There does not appear to be a diurnal pattern in vocal activity; unlike

many other primate species, ruffed lemurs in this study did not exhibit a

peak in calling activity at dawn and/or dusk. Roar‐shrieks and barks

were given throughout the day at a roughly‐constant rate from

7:00–17:00, though roar‐shrieks appear to occur more frequently later

versus earlier in the day (Figure 5). We found that ruffed lemurs do

exhibit nocturnal vocal activity, albeit still at a far lower rate than during

the day (Figure 5). Upon further inspection, we found that nearly all

nocturnal vocal activity coincides with the ruffed lemur mating period

(Figure 6). We observed mating on June 29, July 3, July 8–11 and July

13; this generally aligns with peaks in both diurnal and nocturnal calling

rates. However, because of ruffed lemurs' fission‐fusion dynamics

(individuals within a community move between subgroups), we are not

able to tie particular calls to a specific individual or subgroup.

Unfortunately, only SM was running in the second half of July

(postmating season), and as previously discussed, had a smaller

detection range due to higher background noise. Nevertheless, the

SM call detections from the third week of July show no nocturnal calls

and a small number of diurnal calls, mimicking the pattern observed

before the mating period. Given that this is only from one recorder,

these results are very preliminary and should be interpreted with

caution.

TABLE 3 Confusion matrix for the validation data set.

Actual

Presence Absence

Predicted Presence 112 89

Absence 7 27,237
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4 | DISCUSSION

In this study, we combined powerful new technical advances such as

passive acoustic monitoring and deep learning to study black‐and‐

white ruffed lemurs in southeastern Madagascar. Our results suggest

that PAM is a powerful and cost‐efficient method for detecting

ruffed lemurs in their natural habitat. This is in line with previous

studies that have shown PAM can be as accurate and efficient as

traditional monitoringmethods, if not more so (Boullhesen et al., 2021;

Castro et al., 2019; Darras et al., 2019; Digby et al., 2013; Leach

et al., 2016; Melo et al., 2021). We found PAM to be more effective

than in‐person observations with respect to time, cost, labor, and the

benefit of yielding a data set that can be re‐analyzed for other use

cases. While PAM requires a high upfront cost to purchase

autonomous recorders, batteries, and SD cards, this paid for itself

after only 2 months in the context of our study. However, this study

was conducted at one field site with a small survey area so this may

not generalize to larger, landscape‐scale projects. We do acknowl-

edge that the high upfront cost for such large projects can still be

prohibitive, but the cost of in‐person observations for such a project

would likely be just as high, if not higher.

The in‐person observations for this project are also facilitated by

the fact that the Mangevo ruffed lemur population is habituated, radio‐

collared and therefore easier to find and follow. Ruffed lemurs also have

TABLE 4 Comparison in scale and scope of sampling design between passive acoustic monitoring and on‐the‐ground observations.

Passive acoustic monitoring and machine learning On‐the‐ground observations and manual processing

Total # of call (bark, roar‐
shriek) detections

5118 740

Call detections per unit
time (h)

2.23 (5118 detections/2300 h) 1.85 (740 detections/400 h)

Cost (USD) $720–$1820
• Recorders x3—$300–$1200 (with Audiomoths,

would be $300)
• Batteries (NiMH “D”)—$100–$200 (cost

variable between brand, type (AA vs. D)

alkaline vs. NiMH)a

• SD cards—$50–$150 (cost variable between
size, brand, microSD vs. SD)

• Field team costs—$270

$1950
• Field team salaries—$1250
• Food—$500
• Supplies—$200

Time (labor hours)‐data
collection

12 days (optimal # if only doing PAM)
• 4 trips—Deploy recorders, check 1 [batteries/

SD], check 2, retrieve)
• 3 days/trip—Hike in, recorder work, hike out

56 days
• 50 full‐day focal follows (x ~ 8.5 h per) = 400 h
• 6 days—Hike to/from site

Time (labor hours)‐data
analysis

~2 weeks
• Annotating training data‐7 days
• Running model‐4 days (CPU)
• Validating predictions‐3 days

~11 weeks
• 2300 h raw data × 15min/hb = 34,500min (575 h) to

manually validate entire data set
• 575 h = 11 weeks (assuming 50‐h work week)

Temporal sampling scale • 2300 recording hours across 2.5 months
• 24‐h coverage

• 400 direct observation hours across 2.5 months
• 12‐h coverage

Spatial sampling scale ~1 km2c ~1.5 km2d

Miscellaneous Other benefits
• Permanent record that can be re‐analyzed for

other use cases, or assessing change over time

• Record all other vocal species too
Other considerations
• Only loud/long calls used for ML detectione

• Less specific data
• Tech malfunctions sometimes

Other benefits
• All call types recorded
• More contextual data (group size/composition,

behavior, etc.)
Other considerations
• (Mangevo)—Observations facilitated because of habituated,

radio‐collared groups; requires VHF receivers/antennas
($1000 s of dollars)
◦ Projects without this set‐up would require even more

manual effort and time

aAlkaline batteries are cheaper (by ~50%) than NiMH batteries, but cannot be reused and increase electronic waste. So, this cost is variable and could be
lower if using alkaline.
bTo an experienced listener (CHB), a combination of visually and aurally inspecting spectrograms manually took ~15min per hour of recordings. A naïve
listener would likely take longer, further elongating the time required for data processing.
cApproximate detection radius (Swifts‐350m, SM‐150m).
dHome range sizes of Mangevo groups, from Baden et al. (2020).
ePAM recorders could have detected other ruffed lemur calls but we focused only on the two loud calls in our ML pipeline.
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fairly small home ranges (and core areas within those; Baden et al., 2020),

so more effort would be required for more migratory species, regardless

of monitoring method. One of the greatest benefits of PAM, though, is

the permanent record of the soundscape, which allows the data set to

be analyzed for different species and use cases in future. This audio data

can also serve as an important baseline with which to compare changes

at the same site over time. Of course, PAM misses out on critical

contextual and behavioral information that in‐person observation allows

F IGURE 4 Vocal rate of black‐and‐white ruffed lemur calls (roar‐shrieks + barks) per day, per recorder in Mangevo, Ranomfana National
Park. (a) is Swift1 recorder, (b) is Swift2 recorder, (c) is SongMeter1 recorder. Vocal rate = detections/recorder hours, where recorder hours is the
total number of hours each recorder was running.

F IGURE 5 Total number of black‐and‐white ruffed lemur calls (left panel), roar‐shrieks (middle), and barks (right) per hour in Mangevo,
Ranomafana National Park.

12 of 18 | BATIST ET AL.
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for (Batist et al., 2022; Pereira et al., 1988). It is this information that

permits primatologists to infer call function. PAM is also biased towards

a species' long calls, and misses much of the softer calls within the

repertoire. Taken together, we consider active and passive acoustic

monitoring to be complementary techniques that can each have

strengths and weaknesses depending on the research question or

use case.

As primates are quite soniferous on the whole, PAM presents an

extremely promising opportunity for primatologists in particular. The

fragmented nature of the many primate species' habitats makes

traditional monitoring methods challenging, and PAM could provide a

solution to this problem. By using PAM, primatologists can obtain

long‐term, noninvasive data for multiple primate species in an area

simultaneously. Such presence/absence data, in combination with

geospatial variables, could then be used to generate occupancy and

species distribution models (Appel et al., 2023; Campos‐Cerqueira &

Aide, 2016; Kalan et al., 2015). PAM can also yield important insights

beyond simple presence metrics; for example, without PAM we

would not have quantitative evidence of or patterns in ruffed lemur

nocturnal vocal activity. Furthermore, our results indicate that ruffed

lemurs do not exhibit a dawn/dusk chorus, which is in line with

previous research demonstrating no diel patterning to ruffed lemur

diurnal vocal activity (Batist et al., 2022; Geissmann &

Mutschler, 2006). Our present study expands on this by providing

quantitative evidence of nocturnal calling behavior, the majority of

which occurred during the mating period.

Our study also highlights the potential of deep learning models

such as CNNs in creating passive acoustic monitoring classifiers

(Stowell, 2022; Tuia et al., 2022). We trained and implemented an

open‐source CNN classifier using transfer learning for detecting

ruffed lemur calls. This demonstrates the potential of using machine

learning models to automate the detection and classification of

species‐specific calls in PAM data, reducing manual effort and

improving the efficiency of data processing and validation

(Dufourq et al., 2022; Ruan et al., 2022; Stowell, 2022). Transfer

learning, in particular, holds great potential for bioacoustic classifica-

tion tasks which are typically characterized by class imbalance, long

tails, and small training data sets (Bravo Sanchez et al., 2021; Zhong

et al., 2020). As previously mentioned, we optimized the CNN to

maximize recall, so that we had a higher probability of detecting as

many calls as possible. We achieved an F1‐score of 0.7 and a

remarkably high recall of 0.94 even with a small (by machine learning

standards) training data set. Training data are often difficult to obtain

in bioacoustics, particularly for endangered or elusive species.

Transfer learning, and other even more recent advances such as

autoencoders and transformer models, can help overcome this

common obstacle for PAM analysis (Dufourq et al., 2022).

While the application of deep learning in PAM research has

gained traction, it is crucial to emphasize the importance of

accessibility and the facilitation of knowledge sharing within the

scientific community. We should promote the development of

user‐friendly tools that go beyond the mere release of code on

F IGURE 6 Vocal rate of black‐and‐white ruffed lemur calls (roar‐shrieks + barks) in Mangevo, Ranomafana National Park, per day, split
between (a) diurnal (6:00–18:00) and b) nocturnal hours (18:00–6:00). Vocal rate = detections/recorder hours, where recorder hours is the total
number of hours each recorder was running.
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platforms such as GitHub. While sharing code repositories is

valuable for collaboration and reproducibility, it can present

barriers for noncoders who may struggle with the technical

intricacies of implementation. To overcome this, it is essential to

encourage the creation of comprehensive tools and frameworks

that offer intuitive interfaces, detailed documentation, demos (via

e.g., Google Colab), and step‐by‐step user guides. We should

actively encourage the Python (and scientific research at large)

community to develop open‐source and customizable GUIs. These

GUIs would empower researchers, regardless of their coding

expertise, to harness the power of deep learning algorithms in

bioacoustics analysis and primate research. Existing GUIs which

use machine learning include Deep Audio Segmenter (Steinfath

et al., 2021) which allows a user to annotate and train a deep

neural network, and BirdNET‐Analyzer (Kahl et al., 2021) which is

integrated into Raven Pro (K. Lisa Yang Center, 2023). By

promoting open‐source and accessible initiatives, we can create

a collaborative space where researchers, irrespective of their

programming capabilities, are empowered to contribute to the

refinement and improvement of PAM methodologies. We can

empower a broader audience of researchers to leverage deep

learning approaches effectively in the context of PAM and primate

studies.

4.1 | Limitations and future directions

Our study was limited to three recording devices in one small

survey area, so the results (particularly related to diel patterns)

should be taken with caution. Due to these sample size limitations,

we were not able to statistically test vocal activity patterns and

only report qualitative results. The vocal activity patterns during

the short mating period are fairly anecdotal in that (unfortunately)

only one recorder was functional in the postmating period.

However, given the extremely short mating period, it is very

difficult to collect data during this time. We hope that our

preliminary results will spark future research in ruffed lemur

mating behavior and communication.

Additionally, using different recorders introduced inherent

variation based on differing technical specifications, and we would

recommend researchers use one type of recorder for future studies

to mitigate this. However, the overall pipeline described here is

broadly scalable to larger areas and to other primate species. Indeed,

a broader‐scale PAM study (using this paper's workflow) across the

southeastern Malagasy rainforest corridor is currently in progress to

maximize the scope of ruffed lemur monitoring in the region. We

encourage researchers to consider and account for mitigating

circumstances when selecting optimal deployment sites in the future.

The SM recorder was closer to a river and to our campsite than the

other recorders, so there was much more background noise. This

reduced the detection radius of the recorder as well as the signal‐to‐

noise ratio and therefore also increased the number of false positives.

Deployment site optimization is (rightly) case‐specific, making it

difficult to generalize protocols but emphasizing the importance of

pilot studies.

A fruitful avenue for future research would also be more

standardized experiments, such as playbacks, with multiple on‐the‐

ground groups to better ground‐truth and compare which specific

calls are detected by PAM and in‐person observations (van Kuijk

et al., 2023). Because roar‐shrieks and barks are contagious choruses,

and different subgroups engage in these choruses simultaneously (or

back and forth to each other), in this study we were not able to

directly pinpoint whether a specific chorus we heard in‐person is

detected at the same time in the PAM recording.

5 | CONCLUSION

Our study highlights the potential of PAM as a cost‐efficient and

scalable tool for biodiversity monitoring, especially in regions where

human resources are limited. The use of PAM can provide valuable

data on species presence, distribution, and behavior, which can

inform conservation efforts and aid in the implementation of

effective management strategies. While our study focused specifi-

cally on ruffed lemurs in southeastern Madagascar, the workflow

presented herein can be adapted and applied to other primate

species and regions. We hope that our study will encourage more

primatological research using PAM and contribute to the develop-

ment of more efficient monitoring strategies.
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