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Abstract
Over the past decade several studies have reported that the gut microbiomes of mammals with similar dietary niches exhibit
similar compositional and functional traits. However, these studies rely heavily on samples from captive individuals and
often confound host phylogeny, gut morphology, and diet. To more explicitly test the influence of host dietary niche on the
mammalian gut microbiome we use 16S rRNA gene amplicon sequencing and shotgun metagenomics to compare the gut
microbiota of 18 species of wild non-human primates classified as either folivores or closely related non-folivores, evenly
distributed throughout the primate order and representing a range of gut morphological specializations. While folivory
results in some convergent microbial traits, collectively we show that the influence of host phylogeny on both gut microbial
composition and function is much stronger than that of host dietary niche. This pattern does not result from differences in
host geographic location or actual dietary intake at the time of sampling, but instead appears to result from of differences in
host physiology. These findings indicate that mammalian gut microbiome plasticity in response to dietary shifts over both
the lifespan of an individual host and the evolutionary history of a given host species is constrained by host physiological
evolution. Therefore, the gut microbiome cannot be considered separately from host physiology when describing host
nutritional strategies and the emergence of host dietary niches.

Introduction

The mammalian gut microbiota has a wide range of effects
on host physiology and behavior. Therefore, a key focus of
gut microbiota research over the past decade has been
determining what factors shape its composition and func-
tion. Several comparative papers report that host dietary
niches play a major role in determining the gut microbiota
of a given host species, with diet specializations, such as

carnivory, herbivory, and ant-eating resulting in similar gut
microbial traits across diverse host species [1–3]. These
findings coincide with studies of individual host species that
demonstrate the strong impact of diet on the gut microbiota
across days, months, and years, [4–6] and they support the
hypothesis that gut microbes contribute to host dietary
plasticity by providing specific metabolic services tailored
for the breakdown of certain foods [7, 8]. However, several
factors such as the inclusion of data from both wild and
captive animals, as well as confounds between host phy-
logeny, anatomical specializations, and dietary niche com-
plicate these comparative studies. Captivity has a strong
effect on the gut microbiota [9–11], making it unlikely that
all data from captive individuals are representative of the
true evolutionary relationship between host and microbe.
Additionally, gut morphology impacts the gut microbiota
[12], and the gut microbiota can co-diversify with hosts,
creating strong associations between host physiology, host
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phylogenetic similarity, and gut microbial similarity [13–
15]. Published data describing the microbial signals of
herbivory and carnivory rely heavily (albeit not exclusively)
on closely related mammal species to represent these diets
[2, 3], and a description of the impact of ant-eating on the
gut microbiota encompasses both dietary and physiological
factors since highly divergent myrmecophagus hosts share
convergent physiological adaptations, such as muscular
stomachs and short small intestines [1]. Therefore, the
associations between the gut microbiota and host dietary
niche reported by these studies may not be attributable only
to host dietary niche, and thus may be over-interpreted. In
fact, a recent study suggests that host phylogeny and phy-
siology impact microbiome divergence rates in mammals
more strongly than host diet [16]. Nevertheless, this study
relies on existing data that incorporate many of the same
biases described above. More robust tests of whether host
dietary niche shape the mammalian gut microbiota inde-
pendently of other host factors should focus exclusively on
wild hosts while controlling for both host phylogeny and
gut morphology.

Here, we capitalize on the remarkable dietary and ana-
tomical diversity of non-human primates (primates hereon)
to understand the effect of host dietary niche on the com-
position and function of the colonic gut microbiota. We use
16S rRNA gene amplicon and shotgun metagenomic
sequencing to analyze the colonic gut microbiota of nine
folivorous, wild primate species and nine closely related,
non-folivorous, wild primate species representing the four
major clades of the primate phylogeny, many of which
overlap in geographic range (Fig. 1).

Folivory—the ability to consume large amounts of
leaves either seasonally or year-round—has evolved
independently multiple times throughout the primate
Order (e.g., in Malagasy strepsirrhines: sifaka, indriids;
in platyrrhines, or New World monkeys: howler mon-
keys; in catarrhines, or Old World monkeys: colobines;
and in hominoids, or apes: gorillas). Compared to other
food resources such as fruit and insects, leaves generally
have high amounts of structural carbohydrates and sec-
ondary metabolites, which make them difficult to digest
[17]. In addition to food selectivity, folivorous primates
are believed to rely heavily on the gut microbiota to
utilize this challenging diet [5, 18]. Additionally, in each
primate clade, unique anatomical specializations evolved
in parallel to folivory. Gorillas have a large body size
that maximizes gut volume and retention time, and
colobines have a sacculated foregut. Howler monkeys
have a slightly enlarged colon, and sifaka have an
enlarged caecum. Therefore, it is possible to directly test
whether all folivorous primates share gut microbial
taxonomic and functional characteristics independently
of host phylogenetic and morphological confounds. We
hypothesized that despite an effect of host phylogeny,
gut microbiota composition and function would be
shaped by host dietary niche. In particular, we predicted
that a subset of gut microbial taxa and functions related
to cellulose and secondary metabolite degradation (e.g.,
tannins, phenols, etc.) would be enriched among all
folivorous primates since some quantity of these com-
pounds is likely to reach the colon, regardless of host
physiology, and gut morphology.
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Fig. 1 Host dietary niche has a weak effect on primate gut microbiota
composition. Principal coordinates analysis (PCoA; a unweighted and
b weighted UniFrac distances) of 16S rRNA gene amplicon data
illustrates stronger clustering of non-human primate fecal samples by
host phylogenetic clade (unweighted UniFrac: PERMANOVA F3,153

= 26.4, r2= 0.29, p < 0.01; weighted UniFrac: PERMANOVA F3,153

= 21.7, r2= 0.27, p < 0.01) than diet (unweighted UniFrac:

PERMANOVA F1,153= 13.1, r2= 0.05, p < 0.01; weighted UniFrac:
PERMANOVA F1,153= 9.2, r2= 0.04, p < 0.01). Large spheres
represent folivorous primates and small spheres represent non-
folivorous primates. Folivores are shaded in the phylogenetic tree.
(Note that T. gelada consumes grass, which shares many nutritional
challenges with leaves.)
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Materials and methods

Sample collection

All samples were collected from wild non-human pri-
mates by collaborators at field sites around the world
(Table S1). In every case, bulk fecal samples were col-
lected immediately after defecation with a sterile utensil
(e.g., plastic spoon) and stored in a collection tube with
either 95% ethanol or RNALater. Samples were stored
and transported to the United States by collaborators.
Table S1 lists the responsible collaborator, sampling site,
sample size, and preservation method for each non-human
primate species. Appropriate government permits and
IACUC protocols were obtained by each collaborator
independently.

Sample processing for 16S rRNA gene amplicon
sequencing

We began our analyses by describing the microbial taxo-
nomic composition of all samples. To do this, we followed
the Earth Microbiome Project protocol [19]. We extracted
microbial DNA from all samples using the MO BIO Pow-
erSoil DNA extraction kit. PCR targeting the V4 region of
the 16S rRNA bacterial was performed with the 515F/806R
primers, utilizing the protocol described in Caporaso et al.
[20]. We barcoded and pooled amplicons in equal con-
centrations for sequencing. We then purified the amplicon
pool with the MO BIO UltraClean PCR Clean-up kit and
sequenced on the Illumina MiSeq sequencing platform
(MiSeq Control Software 2.0.5 and Real-Time Analysis
software 1.16.18) at the BioFrontiers Institute Next-
Generation Genomics Facility at the University of Color-
ado, Boulder, USA. Samples were pseudo-randomly
assigned to three different MiSeq runs as they were accu-
mulated so that samples representing a given host clade or
diet type were never all sequenced on the same run. In
several cases, samples from the same host species were
assigned to different runs.

Quality filtering and OTU-picking

The single-end sequencing reads from the 515f primer were
quality-checked using the default settings for the split_li-
braries_fastq.py function in QIIME v1.9.0 [21]. After
quality filtering we obtained 12,178,012 reads associated
with these samples with an average of 23,152 reads/sample
(range: 0–80,714 reads/sample).

Following common practice in microbiome research,
sequences were initially clustered into representative bac-
terial operational taxonomic units (OTUs) using the sort-
merna/sumaclust implementation of open-reference OTU-

picking at 97% sequence similarity [22]. Sequences were
aligned [23], and taxonomy was assigned using UCLUST
[24] and the Green Genes 13_8 database [25, 26].
Sequences representing chloroplasts and mitochondria were
filtered out, and any OTUs representing <0.00005% of the
total dataset were filtered out as recommended for Illumina-
generated sequencing data [27]. A subset of samples were
randomly selected for analysis for each host species
(Table S1). The data for these samples were rarefied to
15,012 reads/sample (single_rarefaction.py).

To increase our ability to describe patterns of microbial
community structure at finer taxonomic resolution, we also
processed sequences using Deblur [28], which bypasses the
OTU clustering algorithm described above. Briefly, this
algorithm uses Illumina error profiles to obtain putative
error-free sequences that describe microbial community
composition at the sub-OTU (sOTU) level. To place
deblurred sequences into a phylogenetic context, we used
SEPP [29] to insert unique deblurred V4 fragments into the
most recent available Greengenes phylogeny of repre-
sentative 97% clustered full-length 16S sequences
(Greengenes v. 13_8). SEPP was run with an alignment
subset of 100 and placement subset set of 500. Reference
sequences were then trimmed from the tree, leaving the
subsequent phylogeny for downstream applications,
including alpha- and beta-diversity calculations and bal-
ance tree analysis. Taxonomy was also inferred from the
SEPP insertions. For each deblurred sequence, SEPP
returns a set of (at most) seven highest-likelihood candidate
placements in the reference phylogeny, each of which
includes an attaching branch from the reference tree along
with a probability. For each branch in the reference tree, a
taxonomic label was assigned at each rank if and only if at
least 95% of the leaves below that branch share the same
label. The root of the tree was located on a branch that
splits the kingdoms Bacteria and Archaea perfectly, so
every rank of the taxonomy is well contained on one side of
the root or the other. For a given deblurred sequence at a
given taxonomic rank, each candidate placement inherits
the label of its attaching branch and a label is assigned to
the sequence if candidate placements representing at least
80% cumulative probability share that label. Effectively,
labels were assigned to internal branches of the Greengenes
tree by a de-facto voting of child leaves with a quorum of
95%, and query sequences were labeled by SEPP if it
assigned at least 80% probability to branches with a com-
mon label.

All subsequent statistical analyses were performed on
both the OTU-clustered dataset and the deblurred dataset,
and results were consistent across methods. The analyses of
microbial community taxonomic composition presented in
the main text utilize the deblurred data unless otherwise
noted.

Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes



Analysis of sample taxonomic composition

Once processed, we used sequence data to compare rich-
ness, diversity, and microbial community composition
among samples. We generated beta diversity distance
matrices using QIIME (beta_diversity_through_plots.py),
and we visualized clustering patterns among samples using
principal coordinates analysis (PCoA, Emperor v 0.9.51
[30] and non-metric multi-dimensional scaling (vegan
package, R software, version 3.0.2)). We calculated pair-
wise distances between samples using unweighted UniFrac
and weighted UniFrac similarity indices [31]. We tested for
significant differences in sample clustering patterns and
microbial community composition across host clades (Old
World monkey, New World monkey, ape, lemur) and diet
type (folivore, non-folivore, controlling for host clade) for
each species using permutational analysis of variance
(PERMANOVA, adonis function in the vegan package, R
software, version 3.0.2). Because PERMANOVA is sensi-
tive to differences in dispersion between groups, we also
tested for these differences. Host phylogenetic groups
exhibited significantly different dispersion (F3,150= 13.4, p
< 0.01) while host diet groups did not (F3,150= 3.5, p=
0.06). However, visual inspection of clustering plots sug-
gests that differing dispersion is not driving patterns of
significance across host phylogenetic groups. We calculated
the number of observed sOTUs and the Faith’s phylogenetic
diversity [32] to describe the alpha diversity in each sample
using QIIME (alpha_rarefaction.py). We then identified
core sOTUs shared by 90% of the samples for each host
clade and in 80% of the samples for each host diet type
(compute_core.py).

To detect sOTUs that were significantly different in
relative abundance among the four clades of primates we
utilized a linear discriminant analysis of effect size (LEfSe;
[33]). We assigned primate families as the class vector and
kept features with a logarithmic LDA score of >3 using
default parameters. We reran this analysis using diet as the
class vector and primate family as the subclass vector to
detect sOTUs different in abundance between folivores non-
folivores; however, no features were detected even with a
low LDA score cutoff of 0.8.

Because, we observed high levels of variation in the
distribution of bacterial taxa among primate clades, we also
used a more sensitive method for detecting differences in
microbial community composition using a concept known
as balance trees [34]. These balances are the log-ratios of
phylogenetic clades and analyzing these balances alleviates
the common problems associated with compositionality in
microbial sequence data [35]. The specific methodology
used for constructing and analyzing can be found at https://
github.com/biocore/gneiss. Briefly, a pseudocount of 1 was
added to all of the values in the deblurred sequence table to

account for zeroes and then transformed using the isometric
log-ratio calculation [36]. Using the microbial phylogenetic
tree built during processing, balances were calculated by
computing the log-ratio of proportions between adjacent
phylogenetic clades at each internal node of the tree. A
linear mixed effects model was then run on each balance, to
test for significant differences in the ratios of bacterial taxa
among folivorous and non-folivorous lineages while
accounting for phylogeny and variability among individuals
as random effects.

Testing the effect of host geography

Because host phylogeny, geographic location, and local diet
are often confounded, we wanted to more closely explore
the potential influence of host geography and local diet on
our dataset. Therefore, we created two additional sets of
PCoA plots (based on 97% OTUs) with new samples
included. First, we examined only New World monkeys but
utilized additional howler monkey samples collected from
different sites with different forest types [37]. Specifically,
we included Alouatta pigra samples from a semi-deciduous
forest (El Tormento, Mexico) and Alouatta palliata samples
from an evergreen rainforest (La Suerte, Costa Rica), which
represent markedly distinct environments and diets. Addi-
tionally, because the Alouatta diet varies in leaf intake
seasonally, we also included samples collected in the same
forest during both periods of high fruit intake and high leaf
intake when possible.

We also examined the effect of host geography on a
larger scale by comparing the gut microbiota of African
and Asian colobines. While all of these colobines have
similar gut morphology and dietary niches, they inhabit
distinct continents with different environments and local
diets. To perform this comparison, we integrated published
data from twelve wild Asian colobines (red-shanked doucs,
Pygathrix nemaeus) with our original data [38]. In both
cases, open-reference OTUs were re-picked for the entire
dataset using the same methods described above. The
resulting data were filtered, rarefied, and analyzed the same
way as well.

Cophylogenetic analyses

Given that codiversification of hosts and gut microbes has
been emphasized as an important process contributing to the
composition of the primate gut microbiome [13, 14], we
wanted to explicitly explore the relationship between the
host phylogeny and diversity of microbial 16S sequences in
this dataset. Therefore, we performed two analyses: one, a
reimplementation of the beta-diversity clustering sensitivity
analysis in Sanders et al. [39] to assess whether patterns of
microbial community similarity that are correlated with host

K. R. Amato et al.

https://github.com/biocore/gneiss
https://github.com/biocore/gneiss


phylogeny are likely to indicate codiversification; and two,
an application of the permutation test of cophylogeny from
Hommola et al. [40] to sequence diversity within OTUs to
test for codiversification in individual bacterial lineages.
Both analyses were implemented in a Snakemake [41]
workflow available at https://github.com/tanaes/snakema
ke_codiversification. Briefly, deblurred 16S sequences
were clustered using the USEARCH [24] pipeline in QIIME
1.8.1 at similarity thresholds of 85, 88, 91, 94, 97, and 99%
identity. For beta-diversity clustering sensitivity analysis,
beta-diversity distances among four randomly selected
samples per species were calculated from 100 OTU tables
jackknifed to 7200 sequences. Each jackknifed distance
matrix was UPGMA-clustered, and the resulting similarity
dendrogram compared against the actual host phylogeny. A
summary figure was then created to illustrate the number of
times each actual host clade was recovered from each
parameter combination.

For per-lineage codiversification analysis, the deblurred
16S rRNA sequences composing each 97% OTU were
realigned using MUSCLE, a phylogeny estimated with
FastTree [42], and the pairwise distances among unique
bacterial sequences compared to the pairwise patristic dis-
tances of their host taxa using an adaptation of the Hom-
mola et al. [40] permutation test of cospeciation, with
10,000 permutations. This test is an extension of the Mantel
test of distance matrix correlation, modified to allow mul-
tiple symbionts per host (and vice versa). p-values were
corrected using the Benjamini–Hochberg False Discovery
Rate, and OTUs estimated to be significantly codiversifying
with their hosts illustrated by mapping host information
onto the intra-OTU phylogeny.

Sample processing for shotgun metagenomic
sequencing

In addition to describing the taxonomic composition of the
sampled primate gut microbiomes, we also wanted to assess
the functional capacity of these microbiomes. To do this, a
subset of 95 samples was randomly selected for shotgun
metagenomic sequencing (Table S1). Sequencing libraries
were robotically prepared with the Kapa Hyper Library
Preparation kit (Kapa Biosystems) at the Roy J. Carver
Biotechnology Center at the University of Illinois at
Champaign-Urbana. Library insert sizes ranged from 80 to
700 bp. Libraries were combined into four pools, each of
which was sequenced on one lane of the Illumina
HiSeq2500 using TruSeq SBS sequencing chemistry ver-
sion 4. A total of 160-nt paired-end reads were generated
using 161 cycles for each end of the fragment. Fastq files
were generated and demultiplexed using the bcl2fastq
v1.8.4 Conversion Software (Illumina). The run produced a
total of 1,472,869,654 reads (average: 7,671,196 ±

2,966,770 reads/sample) with average quality scores of 32
and above.

Gene ortholog group and pathway relative
abundance

Shotgun metagenomic data were quality filtered with
Trimmomatic v.0.32 with parameters ILLUMINACLIP:
TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLI-
DINGWINDOW:4:15 MINLEN:36. This yielded 94 meta-
genomes with sufficient sequencing depth for quantitative
analysis, which were subsampled to the size of smallest one
(3,589,870 reads) using seqtk v.1.0. Forward and reverse
reads were concatenated (seqtk was run with the same seed
for both to maintain read pairs). The 94 metagenomes were
analyzed for the relative abundance of gene ortholog groups
and biochemical pathways using HUMAnN2 v.0.2.2 with
the following workflow to ensure comparable results across
samples: MetaPhlAn2 was run on each metagenome using
MetaPhlAn2 database v.20. Lists of matched strains in 94
results were merged to a single ‘bugs list’. A single
HUMAnN2 run was done using this bugs list with the sole
purpose of generating a custom Bowtie2 database from the
subset of the ChocoPhlAn v.0.1.1 centroid genomes corre-
sponding to the bugs list. HUMAnN2 (http://huttenhower.
sph.harvard.edu/humann2) was then run on all 94 samples
using this pre-compiled database (first step: Bowtie 2 on all
reads) and then with the default UniRef50 database (second
step: DIAMOND translated search on leftover reads) with
options--bypass-prescreen--bypass-nucleotide-index. Each
of the three types of HUMAnN2 output tables (genefami-
lies, pathabundance, pathcoverage) were then merged
across the 94 samples (humann2_join_tables), then nor-
malized to counts per million (cpm) and relative abundance
(relab) (humann2_renorm_table). The genefamilies tables
were regrouped (humann2_regroup_table) from UniRef50
families to KEGG Orthology (KO), Gene Ontology (GO),
MetaCyc reaction (rxn), and Enzyme Classification number
(EC). Finally, tables were split into two versions: stratified
by taxonomy, and unstratified (sum of all strains).

Analysis of sample functional composition

Once sequence data were processed, we used them to
compare richness, diversity, and gene composition among
samples. Beta diversity distance matrices were generated
using QIIME (beta_diversity_through_plots.py), and clus-
tering patterns among samples were visualized using prin-
cipal coordinates analysis (PCoA, Emperor v 0.9.51 [30])
and non-metric multi-dimensional scaling (vegan package,
R software, version 3.0.2). Pairwise distances between
samples were calculated using Bray-Curtis similarity indi-
ces. We tested for significant differences in sample
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clustering patterns and microbial community composition
across host clades (Old World monkey, New World mon-
key, ape, lemur) and diet type (folivore, non-folivore,
controlling for host clade) for each species using permuta-
tional analysis of variance (PERMANOVA, adonis function
in the vegan package, R software, version 3.0.2).

To investigate whether taxonomic and gene abundance
patterns were similar in our samples, we compared beta-
diversity patterns between 16S rRNA (unweighted UniFrac)
and shotgun metagenomics Metacyc reaction pathway
(Bray-Curtis) datasets. We used a Procrustes analysis (least-
squares orthogonal mapping) to transform the first three
principal coordinates for each dataset (QIIME, transform_-
coordinate_matrices.py) and estimate m2 value (sum of the
squared deviations). We then shuffled sample identifiers and
recalculated m2 999 times and reported the p-value as the
proportion of m2 values lower than the actual m2 value. We
also directly compared the distance matrices using a mantel
test with 999 permutations.

In addition to assessing overall functional capacity, we
also wanted to examine differences in the relative abun-
dances of specific enzymes associated with functions such
as cellulose degradation and plant secondary metabolite
degradation. To do this, we extracted information about
CAZyme relative abundances from the metagenomic data-
set. The HUMAnN2 analyses described above were reim-
plemented, but using the dbCAN [43] version of the
CAZyDB [44] as a custom translated alignment database,
skipping the Bowtie2 nucleotide alignment step. Substrate
specificities of particular CAZyme families used to produce
Figure S8 were derived from Table S1 of [45] (Cantarel
et al. 2012). Summed counts for CAZymes in each of these
categories were compared using a 2-way ANOVA in R,
with diet category and host phylogenetic group modeled as
additive effects. p-values for an effect of diet were corrected
for multiple hypothesis tests using the Bonferroni method.

We also examined whether other microbial metabolic
pathways differed in relative abundance among samples.
We used a linear mixed effects model to assess the abun-
dance of specific MetaCyc pathways in folivorous versus
non-folivorous lineages. Model comparisons were per-
formed between one that simply accounted for the random
effects of each species nested within the four phylogenetic
groups and a second which incorporated diet as an addi-
tional fixed effect. Pathways were identified as associated
with diet category when inclusion significantly improved
the fit of the second model over the first with a p-value of
<0.01.

For similar reasons, we also utilized a linear discriminant
analysis of effect size (LEfSe; [33]) to detect pathways that
were significantly different in relative abundance among
clades of primates. We assigned primate phylogenetic group
as the class vector and diet as the subclass vector. Features

with a logarithmic LDA score of >3.0 using default para-
meters were kept.

Results

Gut microbial composition

Using deblurred 16S rRNA amplicon data [28] and con-
trolling for host phylogeny by comparing folivorous and
non-folivorous primates across the entire primate order, we
found that folivory had a small but significant effect on gut
microbiota composition at the sub-OTU level (sOTU;
Fig. 1, S1; unweighted UniFrac: PERMANOVA F1,153=
13.1, r2= 0.05, p < 0.01; weighted UniFrac: PERMA-
NOVA F1,153= 9.2, r2= 0.04, p < 0.01). However, it was
difficult to clearly define a characteristic ‘folivorous primate
gut microbiota.’ There were no consistent differences in gut
microbial richness or diversity between diet types at the
sOTU level (Fig. S2). Additionally, neither diet type was
associated with a core gut microbiota, and LefSe analysis
did not indicate strong differences in the relative abun-
dances of sOTUs between diet types across the primate
phylogeny. Given the possibility that existing taxonomic
labels do not correspond to the specific bacterial clades
most associated with folivory, we also performed a balance
tree analysis to find nodes of the bacterial phylogeny for
which daughter lineages were present in different ratios in
folivorous and non-folivorous primates after controlling for
host phylogenetic group [34]. This analysis revealed several
such bacterial groups within the Clostridia, for which a
significant effect of folivory could be observed in the
aggregate; although, to some extent, these patterns were still
specific to a subset of primate clades (Fig. 2).

Given that we detected a weak effect of host dietary
niche on the composition and function of the primate gut
microbiota, we set out to determine whether other host traits
are more important for shaping the primate gut microbiota.
Our analysis indicated that host phylogenetic relationships
were the strongest determinants of primate gut microbiota
composition at the sOTU level (Fig. 1, S1; unweighted
UniFrac: PERMANOVA- F3,153= 26.4, r2= 0.29, p < 0.01,
weighted UniFrac: PERMANOVA F3,153= 21.7, r2= 0.27,
p < 0.01). Microbial community richness and diversity dif-
fered significantly across the four primate clades, with
lemurs exhibiting significantly lower sOTU richness and
diversity than all other primates (Fig. S2). Each primate
clade exhibited a distinct core gut microbiota (Table S2),
and LDA Effect Size analysis (LEfSe) [33] indicated that
several sOTUs, particularly in the bacterial class Clostridia,
significantly differed in relative abundance across the pri-
mate clades (Table S3). Additionally, 56% of the sequence
reads generated did not match the GreenGenes database at
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97%, and an average of 15% of the reads in each sample
could not be classified past the kingdom level (range
2–44%; Table S4). While there was a trend for more
unclassified reads associated with folivorous primates
(Table S5), stronger patterns were observed in relation to
host clades. The majority of unclassified reads were detec-
ted in lemurs, both in terms of total proportion of reads and
fraction of observed sOTUs (Figs. S3, S4).

Notably, the observed effect of host phylogeny on gut
microbiota composition did not appear to reflect codi-
versification of host and gut microbiome (a pattern of
concordant phylogenetic histories, potentially resulting
from cospeciation over time [46]), as is sometimes assumed.
Patterns of phylosymbiosis, or congruence between host
phylogeny and whole gut microbial community similarity
patterns, were maintained regardless of OTU clustering
widths (Fig. S5). This observation suggests that these pat-
terns did not arise from recent microbial evolutionary pro-
cesses, as would have been the case if the patterns arose via

microbial lineage splitting concurrent with host lineage
splitting [39]. Furthermore, within individual OTUs picked
at 97% similarity, 16S rRNA gene sequence variation was
not associated with hosts in a way that indicated strong
codiversification; the strongest, most consistent pattern was
a division between Old World monkeys and New World
monkeys (Fig. S6). Patterns of codiversification may indeed
be present in these communities, but if so the majority of the
signal is likely found at a finer resolution than can be
resolved using the short portion of 16S rRNA gene
sequenced here [13].

After controlling for host phylogeny, host geography
explained a substantial proportion of variation in gut
microbiota composition, especially at narrow clustering
widths (Fig. S7). Because host geography is often con-
founded with host phylogeny, we closely examined the
New World monkeys at the OTU level using additional
samples (Materials and methods). Our findings revealed that
neither host geographic location nor the proportion of fruits

Fig. 2 Folivorous primates share few gut microbiota traits at the
taxonomic level. A phylogenetic tree summarizes the results of the
linear mixed effects analysis applied to balances. The circular heat-
maps surrounding the tree plot the proportions of microbes across all
of the samples, with the outmost ring containing samples from

folivorous species and the inner ring containing samples from non-
folivorous species. Three significant balances (p-value <0.01) differ-
entiate the gut microbiota of folivorous primates from non-folivorous
primates. Darker shades represent enrichment of that particular
microbial clade
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and leaves in the diet at the time of sampling drove the
observed patterns (Fig. S8). Samples clustered by host
genus and species independently of both intra-specific dif-
ferences in sampling location or percent folivory of the diet
(Fig. S8). Integrating previously published Asian colobine
data (Pygathrix nemaeus) [38] with our larger dataset also
indicated stronger clustering of African colobines with
Asian colobines compared to other African primates (Fig.
S9), suggesting an important role for host physiology in
shaping the gut microbiota given the specialized gut mor-
phology of colobines.

Gut microbial function

Compared to gut microbial taxonomic composition, we
detected a slightly more robust signal of gut microbial
functional similarity (measured using shotgun metage-
nomics) among folivorous primates (Fig. 3a, MetaCyc
reactions, Bray-Curtis: PERMANOVA F1,93= 8.7, r2=
0.07, p < 0.01). Nevertheless, Procrustes analysis demon-
strated strong concordance between patterns in gut micro-
biota composition and function (Fig. 3b, S10), as previously
demonstrated for other mammals on a much broader phy-
logenetic scale [3], and again, there were few specific
microbial characteristics driving overall patterns. Control-
ling for host phylogeny, folivorous primates were enriched
for microbial biosynthesis of arginine and chorismate (a
precursor to tryptophan), as well as aminoimidazole ribo-
nucleotide biosynthesis (precursor to adenine; Fig. 4). Non-
folivorous primates were enriched for purine degradation
and for multiple pathways involved in aerobic energy pro-
duction and sugar degradation (Fig. 4). There was no dif-
ference in pathways for cellulose degradation or plant
secondary metabolite degradation between the two diet

groups. However, non-folivorous primates were enriched
for CAZymes involved in starch and sucrose degradation
(Fig. S11).

Similar to taxonomic composition, the functional profile
of the primate gut microbiota was most strongly influenced
by host phylogeny and physiology (Fig. 3b, S5; Bray-
Curtis: PERMANOVA F3,93= 11.5, r2= 0.28, p < 0.01).
The richness of MetaCyc reaction pathways associated with
each primate clade was similar, but LefSe analysis revealed
differences in the relative abundance of several pathways
across clades (Table S6). Furthermore, CAZyme analysis
highlighted an increased relative abundance of enzymes
for degrading peptidoglycans and plant cell walls in
New World monkeys (Fig. S11). These findings suggest
that physiological similarities between closely related pri-
mate species result in requirements for similar microbial
services regardless of recent divergence in host dietary
niches.

Discussion

Collectively, our results demonstrate that the influence of
host phylogeny and physiology on the primate gut micro-
biota is substantially greater than that of host dietary niche.
While some shared traits in microbial taxonomy and func-
tion are apparent among folivorous primates, the evolution
of folivory in each primate clade seems to have been more
strongly characterized by unique changes in the distal gut
microbiome. For example, at the taxonomic level, even
when gut microbial changes in response to folivory appear
to involve the same clades of bacteria, different members of
those clades fill what we predict are similar niches in dif-
ferent host lineages. These results are consistent with the

W

W

(10) Ape

(15) Lemur

(40) New orld Monkey

(29) Old orld Monkey

Phylogenetic Group

(49) Folivore

(45) Non-folivore

Diet Group
a b

Fig. 3 Host dietary niche has a weak effect on primate gut microbiota
functional potential. a Principal coordinates analysis (PCoA; Bray-
Curtis dissimilarity) of MetaCyc reaction pathway data illustrates weak
clustering of non-human primate fecal samples by diet (PERMA-
NOVA F1,93= 8.7, r2= 0.07, p < 0.01). b PCoA illustrating Procrustes

analysis of 16S rrNA gene amplicon data (unweighted UniFrac dis-
tance) and Metacyc reaction pathway data (Bray-Curtis dissimilarity).
For both datasets, host phylogenetic clade is the strongest driver of
sample clustering patterns. Sample sizes indicated in parentheses
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observation that very ancient splits in bacterial evolution are
associated with microbial signatures observed in much more
recently evolved mammalian dietary specializations [47].

Whether host gut morphology, immune system function,
or other physiological factors are most important in shaping
the gut microbiota in the context of host phylogeny remains
to be seen, but we speculate that a combination of these
physiological factors interact to determine the gut micro-
biota. For example, in addition to influencing the volume
and surface area of different parts of the gut occupied by
microbes, anatomical specializations such as a sacculated
foregut or an enlarged caecum may alter signaling mole-
cules such as toll-like receptors that act as selective filters
on gut microbiota composition. These changes could
encourage the acquisition or evolution of new microbial
taxa that contribute important metabolic functions to hosts.
Shifts in dietary substrates provided to gut microbes as a
result of host diet changes could result in the same pro-
cesses, explaining the dual impact of host phylogeny and
dietary niche that we observed. Our discovery of novel
microbial taxa in each primate clade, many of which were
associated with folivory, provides evidence for this process,

as well as expanding our understanding of the gut microbial
diversity contained within the primate order [14].

These evolutionary and ecological processes also likely
feed back positively among diet, the gut microbiota, and
host physiology, intensifying the microbial signal of diet
over time. In fact, our data clearly demonstrate a stronger
signal of folivory in the gut microbiota of those primate
clades in which folivory has been established for longer
(e.g. lemurs: ~40 mya; compared to Old World monkeys:
~20 mya; New World monkeys: ~17 mya; apes: ~10 mya)
[48]) (Fig. 4). This pattern parallels the pattern reported in a
study of 24 animal species in which the effect of host
phylogeny on the gut microbiota increased in accordance
with the time since host species divergence [15]. It may also
explain why diet-associated signals of microbial con-
vergence have been more difficult to detect in host clades
with more recent evolutionary diet shifts (e.g., bears, ~5
mya; [2]).

Finally, although, we report a weak influence of host diet
on the gut microbiota, given the range of habitats, beha-
viors, and physiological adaptations represented by these
primate species, and the fact that primates have been

Fig. 4 Folivorous primates share few gut microbiota traits at the
functional level. MetaCyc reaction pathways with differential relative
abundances between folivorous and non-folivorous primates according

to linear mixed effects models show few patterns. Positive values
illustrate enrichment in folivorous primates while negative values
illustrate enrichment in non-folivorous primates
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diverging for ~65 million years (with folivory emerging
at different points during this period) [48], our ability to
detect any similarities in the gut microbiota of folivorous
primates is striking. Future studies targeting the microbial
taxa and functions associated with folivory in primates
are therefore warranted. A folivorous primate microbiome
enriched in pathways for the production of essential
or conditionally essential amino acids, such as tryptophan
and arginine [49], and a non-folivorous primate microbiome
enriched in pathways for starch and sucrose degradation,
suggest that microbial services such as vitamin and
nutrient biosynthesis and energy metabolism may be
especially important to understanding adaptations to
folivory.

It is also important to note that this study relied solely on
fecal samples despite a range of gut morphological spe-
cializations being represented by the sampled primates. A
recent study of sloths indicates that microbial signals of diet
between species are greater in the foregut compared to the
hindgut [50]. Therefore, a comparison of the microbiota of
gut chambers where most leaf degradation occurs in each
primate clade could reveal more marked patterns than those
reported here. However, these data require invasive sam-
pling and are vastly more difficult to obtain from wild
individuals.

This analysis provides important insight into the pro-
cesses behind the evolution of both hosts and their gut
microbes. While the flexibility of the mammalian gut
microbiota in response to host diet has been a dominant
theme in the field, by utilizing independent contrasts of
dietary niche across multiple primate clades with distinct
gut morphologies, we demonstrate clear limits to the ability
of the mammalian gut microbiota to shift in response to
changes in host diet. While differences in diet across space
and time have a strong effect on the gut microbiome of any
given host species when considered in isolation [4, 5, 51–
56], their effect is much smaller than that of host phylogeny
and physiology and is difficult to detect in the context of
cross-host species comparisons. In this sense, the impor-
tance of diet in shaping the gut microbiome is influenced by
study design and scale. Although, gut microbes likely play a
critical role in supporting host dietary specializations and
facilitating individual host dietary plasticity, our data indi-
cate that the bidirectional interactions of host physiology
and gut microbiota over evolutionary time ultimately dictate
the host nutritional outcomes resulting from a given dietary
strategy.
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