
ORIGINAL ARTICLE

Primate genotyping via high resolution melt analysis: rapid
and reliable identification of color vision status in wild lemurs

Rachel L. Jacobs1,2,3 • Amanda N. Spriggs1,4 • Tammie S. MacFie5 •

Andrea L. Baden3,6,7,8 • Mitchell T. Irwin9 • Patricia C. Wright3,10 •

Edward E. Louis Jr.11 • Richard R. Lawler12 • Nicholas I. Mundy5 •

Brenda J. Bradley1

Received: 6 March 2016 / Accepted: 13 May 2016 / Published online: 6 June 2016

� Japan Monkey Centre and Springer Japan 2016

Abstract Analyses of genetic polymorphisms can aid our

understanding of intra- and interspecific variation in pri-

mate sociality, ecology, and behavior. Studies of primate

opsin genes are prime examples of this, as single nucleo-

tide variants (SNVs) in the X-linked opsin gene underlie

variation in color vision. For primate species with poly-

morphic trichromacy, genotyping opsin SNVs can gener-

ally indicate whether individual primates are red-green

color-blind (denoted homozygous M or homozygous L) or

have full trichromatic color vision (heterozygous ML).

Given the potential influence of color vision on behavior

and fitness, characterizing the color vision status of study

subjects is becoming commonplace for many primate field

projects. Such studies traditionally involve a multi-step

sequencing-based method that can be costly and time-

consuming. Here we present a new reliable, rapid, and

relatively inexpensive method for characterizing color

vision in primate populations using high resolution melt

analysis (HRMA). Using lemurs as a case study, we

characterized variation at exons 3 and/or 5 of the X-linked

opsin gene for 87 individuals representing nine species. We

scored opsin genotypes and color vision status using both

traditional sequencing-based methods as well as our novel

melting-curve based HRMA protocol. For each species, the

melting curves of varying genotypes (homozygous M,

homozygous L, heterozygous ML) differed in melting

temperature and/or shape. Melting curves for each sample

were consistent across replicates, and genotype-specific

melting curves were consistent across DNA sources (blood

vs. feces). We show that opsin genotypes can be quickly

and reliably scored using HRMA once lab-specific refer-

ence curves have been developed based on known geno-

types. Although the protocol presented here focuses on

genotyping lemur opsin loci, we also consider the larger

potential for applying this approach to various types of

genetic studies of primate populations.
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Introduction

Unlike most mammals, many primates are able to readily

distinguish between colors of long wavelength light (or-

anges and reds) and medium wavelength light (greens)

(Jacobs 1993). This capacity for trichromatic color vision

results from individuals having three functional cone

photoreceptors in the retina that are tuned to different

spectral sensitivities: short (S), medium (M), and long

(L) wavelengths (Neitz et al. 1991; Jacobs 1995; Dacey

2000). This spectral tuning is determined by differences in

photopigment opsin proteins, which are coded by opsin

genes (Jacobs 1995; Surridge et al. 2003).

Most primates have a functional copy of the autosomal S

opsin gene, but many species differ in the presence and

spectral tuning of X-linked M and L opsins, resulting in

differences in color vision capacities (Jacobs 1995; Tan

and Li 1999). Virtually all catarrhines have trichromatic

color vision due to a duplication of the X-linked opsin

gene, with the two gene copies separately encoding M and

L proteins (Dulai et al. 1999). Malagasy lemurs and most

Neotropical monkeys, however, have a single X-linked

opsin gene, and this gene is often variable, with M and L

opsins as possible allelic variants (Jacobs 1998; Tan and Li

1999; Jacobs and Deegan 2003). Heterozygous females

with two different variants (M and L) have the potential for

trichromatic color vision, while males and homozygous

females are red-green color-blind (dichromatic for only M

or only L) (Jacobs 1998; Tan and Li 1999).

Differences in the spectral sensitivity of M and L opsins

are largely due to nonsynonymous substitutions at a few

key codon sites in the X-linked opsin gene (Nathans et al.

1986; Tovee 1994; Shyue et al. 1998; Nathans 1999). In

platyrrhines, three key amino acid sites (exon 3 site 180;

exon 5 sites 277, 285) impact major spectral shifts (changes

at exon 4 sites 229, 233 have additional minor effects)

(Neitz et al. 1991; Yokoyama and Radlwimmer 1998).

Variation in most lemurs is due to a single-site polymor-

phism (exon 5 site 285) (Tan and Li 1999; Veilleux and

Bolnick 2009). Thus, color vision differences in many

primates are due to a small number of single nucleotide

variants (SNVs). Since genotype and phenotype are tightly

linked (e.g., Bowmaker et al. 1980; Jacobs 1984), the color

vision status of individual primates—dichromatic L,

dichromatic M, or trichromatic—can be assessed by

sequencing opsin genes at these diagnostic SNV sites (e.g.,

Melin et al. 2007, 2008; Hiramatsu et al. 2008).

Given the potential influence of color vision on behavior

and fitness, characterizing the color vision status of study

subjects is becoming commonplace for many primate field

projects (Bunce et al. 2011; Fedigan et al. 2014; Jacobs and

Bradley 2016). Several studies of wild platyrrhines have

assessed the relationship between color vision and fruit

foraging (Vogel et al. 2007; Hiramatsu et al. 2008; Melin

et al. 2008), insect capture (Melin et al. 2007; Smith et al.

2012), activity cycle (Mundy et al. 2016), grouping pat-

terns (Surridge et al. 2005), and fitness (Fedigan et al.

2014). Studies of wild lemurs have also examined color

vision in relation to foraging, activity cycle, and ambient

light (Veilleux et al. 2014; Valenta et al. 2015).

Such studies characterizing color vision via opsin

genotyping generally entail targeting *100–300-base pair

(bp) exonic regions via the polymerase chain reaction

(PCR), followed by Sanger sequencing and sequence

alignment (e.g., Hiramatsu et al. 2005; Vogel et al. 2007;

Leonhardt et al. 2009; Bunce et al. 2011). Heterozygous

genotypes are identified by the presence of two nucleotide

peaks at diagnostic sites on both strands (forward and

reverse). Although straightforward, this multi-step

approach can be time-consuming and costly, especially

since most Sanger sequencing is now outsourced to core

facilities. Here we present a rapid, inexpensive method for

assessing color vision genotypes using high resolution

melting analysis (HRMA) of PCR amplicons.

HRMA entails a quantitative PCR reaction using inter-

calating fluorescent dyes, followed immediately by char-

acterization of precise amplicon melt curves showing

fluorescence as a function of temperature in real time (Liew

et al. 2004). HRMA takes advantage of the fact that dou-

ble-stranded DNA is connected by hydrogen bonds, which

can be broken by heat. The stability of a sequence changes

based on the nucleotide content (e.g., A-T base pairs form

two hydrogen bonds, G–C pairs form three) (Doktycz

2002). Thus, the melt temperature and shape of a melt

curve is determined by the nucleotide sequence, and SNV

genotypes produce sequence-specific melt curves that dif-

fer in melt temperature and/or shape (Wittwer et al. 2003).

Commonly used in clinical diagnostics (Payne et al.

2014), HRMA has considerable, yet so far underutilized,

potential for studies of wild populations (Smith et al.

2010). We developed an efficient HRMA approach for

assessing color vision genotypes in wild primates. We

describe the protocol here and discuss its potential utility

and application, as well as some considerations and

limitations.

Methods

We extracted genomic DNA from blood (n = 75 individ-

uals) and fecal (n = 13 individuals) samples representing

nine lemur species (n = 87 individuals total; Table 1). We
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used spin-column based extraction protocols (Qiagen

DNeasy Blood and Tissue Kit and Stool Kit) following the

manufacturer’s instructions and automated on a QIAcube.

For fecal extractions we modified the initial lysis step with

an extended 48-h incubation in buffer ASL at room tem-

perature and negative controls were included in all

extractions (see also Jacobs and Bradley 2016).

We amplified exons 3 (166 bp) and 5 (240 bp) of the

M/L opsin gene using quantitative (real time) PCR (qPCR).

Primer pairs were originally developed for Sanger

sequencing of lemur opsin loci (exon 3, 50-TCTGGTCCC
TGGCCATCATTTC-30 and 50-CACACTTACCTGCTCC
AACC-30; exon 5, 50-GTAGCAAAGCAGCAGAAAGA-30

and 50-CTGCCGGTTCATAAAGACGTAGATAAT–30).
We carried out qPCR reactions on a Rotor-Gene Q (Qia-

gen) real time PCR platform. Reactions (20 ll) contained
12.50 ll of Type-it HRM MasterMix (HotStarTaq plus

DNA polymerase, EvaGreen dye, Q-Solution, deoxynu-

cleotides, and MgCl2), 1.75 ll primer mix (10 mM con-

centration forward and reverse), and 5.0 ll of DNA

template (generally B10 lg/ll; based on Nanodrop spec-

trophotometer measurements). We included no-template

controls and blanks (water) in each qPCR run.

We set thermocycling profiles as: an initial activation at

95 �C for 5 min followed by 50 cycles of denaturing at

94 �C for 30 s, annealing at 48 �C for 40 s, and extension

at 72 �C for 60 s. We generated data on the melting pat-

terns of qPCR products immediately following amplifica-

tion by increasing temperatures from 80 to 90 �C, rising by

0.1 �C/2 s. We plotted fluorescence data as a function of

temperature during DNA denaturation (melting) and used

the Rotor-Gene Q software package (Qiagen) to visualize

and compare melting curves.

Because melting curves reflect variation in DNA

sequences, we examined whether melting curves could be

reliable indicators of opsin genotypes. In general,

homozygotes should be distinguished from each other by

variation in melt temperature, and heterozygotes distin-

guished by variation in melt curve shape (e.g., Liew et al.

2004). Given that most variation in lemur M/L opsins has

been identified in exon 5, we generated and compared

melting temperatures and curve shape for exon 5 for all 87

individuals in up to six independent qPCR and HRM

analyses (mean = 2.76 replicates per sample). For a subset

of Varecia variegata samples (n = 11 individuals), we also

generated melting curves for exon 3, which is not known to

vary in most lemur species, in a single qPCR and HRM

analysis. We then assessed whether melting curve assign-

ments accurately corresponded to true opsin genotypes

based on traditional sequencing methods. That is, Sanger

sequencing and HRMA results were directly compared for

all samples. For most of the samples (n = 75 individuals)

we had already generated sequence data from standard PCR

(using the same primer sequences given above for qPCR)

and Sanger sequencing protocols as part of a parallel study.

For a subset of samples (n = 22 individuals) we directly

sequenced the HRMA amplicons (after HRMA scoring) via

traditional Sanger sequencing in both directions on an

Applied Biosystems Genetic Analyzer at the DNA Analysis

Facility at Yale University. Intercalating dyes like SYBR

green/EvaGreen should not interfere with cycle sequencing,

and our results confirm this. Based on the comparisons, we

identified the idiosyncratic curve shape and melting tem-

perature of each genotype for each species.

Results

For each species, the melting curves of varying genotypes

at exon 5 of the M/L opsin gene (homozygous M,

homozygous L, heterozygous) differed in melting temper-

ature and/or shape, and melting curves for each sample

Table 1 Lemur species, study

sites, and sample sizes used in

high resolution melting analysis

(HRMA)

Species Site ntotal ind.
(nind. fecal samples)

Eulemur rubriventer Ranomafana National Park 8

Eulemur rufifrons Ranomafana National Park 14

Hapalemur aureus Ranomafana National Park 5

Lemur catta Isalo National Park 6

Prolemur simus Ranomafana National Park 3

Propithecus diadema Tsinjoarivo 6

Propithecus edwardsi Ranomafana National Park 24 (13)

Propithecus verreauxi Beza Mahafaly Reserve 2

Andohahela National Park 6

Varecia variegata Ranomafana National Park 13a

Total 87 (13)

Counts represent the number of individuals (ind.) sequenced at exon 5 of the M/L opsin gene
a For V. variegata, 11 individuals were also sequenced at exon 3
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were consistent across replicates (Fig. 1a). To more clearly

visualize melting temperatures, we plotted derivative

melting curves (Fig. 1b), and as expected, homozygous

individuals exhibited a single melting curve peak, with M

and L opsin variants differing in melting temperature.

Heterozygous individuals showed a different melt curve

shape with two melt curve peaks (Fig. 1b).

For all individuals (n = 87) and all replicates, those

identified as homozygous or heterozygous based on Sanger

sequencing trace files exhibited single-peak or double-peak

melt curves, respectively. That is, our HRM analyses

produced no false positives or false negatives. Melting

curves were also consistent across samples derived from

different DNA sources (feces and blood). Specifically,

melting temperatures for different genotypes using DNA

from fecal samples were captured within the melting

temperature ranges of those using DNA from blood (see

results for Propithecus edwardsi in Table 2).

For those species with color vision variation (i.e., Pro-

pithecus diadema, P. edwardsi, and V. variegata), the

number of SNVs differing between M and L opsins varied

(i.e., Sanger sequencing indicated that M and L opsins in

some species differ by more than one SNV), but in all

cases, heterozygotes were distinguished from homozygotes

by double-peak melt curves. Furthermore, the two

homozygous genotypes (i.e., homozygous M and

homozygous L) could be readily distinguished by differ-

ences in melting temperature (Fig. 1a, b; Table 2).

Importantly, the average and range in melting temperature

for M and L opsin amplicons varied across species

(Table 2). Because there was no color vision variation

present in our samples for some species (e.g., Eulemur

rubriventer, Eulemur rufifrons, and Lemur catta), the util-

ity of this method for distinguishing potential variation in

these species could not be assessed. Similarly, no variation

was found in our sample of exon 3, comprising 11 V.

variegata individuals. All samples exhibited a single

melting curve peak (n = 11 individuals and replicates,

mean = 86.04, SD = 0.10, range = 85.95–86.30).

Discussion

Our study has identified HRMA as a useful tool for

assessing color vision status in wild lemur populations. We

demonstrate that melt curves of color vision genotypes

consistently match results from traditional PCR and Sanger

sequencing methods. Consistency extends across multiple

species and using samples varying in relative DNA quality

(blood, feces). Color vision genotypes (homozygous M,

homozygous L, and heterozygous) could be readily dif-

ferentiated based on melting curve temperature and shape

in polymorphic taxa. For those species exhibiting low-level

variation, HRMA may be a useful tool for initial screening

of individuals to target those potentially exhibiting differ-

ent color vision genotypes. Direct sequencing of HRMA

amplicons can be used for confirmation.

Thus, opsin genotypes can be quickly and reliably

scored using HRMA, and we make the following recom-

mendations for implementing such a study:

1. PCR primers should flank small segments. Short PCR

amplicons produce greater melting temperature differ-

ences among genotypes (Parant et al. 2009), are less

Fig. 1 Normalized high resolution melting curves (a) and derivative

melting curves (b) for exon 5 of the M/L opsin gene for Propithecus

edwardsi. Each color represents an individual and each individual is

represented by two samples revealing intra-individual consistency and

inter-individual variation

544 Primates (2016) 57:541–547

123



likely to have multiple melting domains (Wittwer et al.

2003; personal observations), and allow for rapid

thermal cycling (Wittwer et al. 2003). Qiagen recom-

mends 70-350-bp amplicons, and we obtained differ-

entiation with our target amplicon lengths of 166 bp

(exon 3) and 240 bp (exon 5). Notably, however,

SNVs have been successfully genotyped with ampli-

cons up to 544-bp long (Wittwer et al. 2003).

2. Before implementing HRMA, sequence a subset of

samples to characterize variation in the population, and

to identify how melting temperatures correspond with

genotypes. Opsin loci sometimes include multiple

variable sites (e.g., Hiwatashi et al. 2010), which

could complicate melting curves if linkage disequilib-

rium is incomplete or if variable sites represent point

mutations. The free online program uMELT can be

used to predict melting curve profiles based on a given

sequence (Dwight et al. 2011), and thus to test whether

genotypes will differ sufficiently without wasting

reagents and templates.

3. Include positive controls and report reference melting

temperatures for each genotype as these can vary

slightly across labs and platforms (i.e., absolute

melting temperatures may not be directly comparable).

Moreover, although the reference curves were consis-

tent across DNA sources (blood vs. feces), a test using

whole genome amplifications (WGA) generated curves

that were shifted slightly compared to genomic DNA

from the same sample. Although melting curve

patterns of WGAs were consistent with those gener-

ated using genomic DNA, peak melting temperatures

differed, such that melting temperatures for WGA

samples were generally higher compared to genomic

DNA (note—all values in Table 2 are for genomic

DNA). For example, mean melting temperature for the

E. rubriventer L opsin is 86.37 ± 0.19 (n = 7; range

86.12–86.60) using WGAs compared to 85.56 ± 0.14

(n = 8; range 85.35–85.83) using genomic DNA from

blood samples. As previous studies have found WGA

products to result in higher rates of HRMA genotype

misclassification compared to genomic DNA (Cho

et al. 2008), projects using WGA products will likely

require additional validation steps.

Because HRMA is an immediate post-PCR process

utilizing real-time instrumentation, it removes the need for

several downstream procedures, such as gel electrophore-

sis, PCR purification, and Sanger sequencing. Accordingly,

not only is genotyping via HRMA rapid, it is also cost-

effective. Although PCR cost per sample is slightly more

expensive using HRMA than traditional PCR (e.g., Qiagen

Type-it HRM kit results in an increase of *$0.15/PCR

Table 2 Peak melting

temperatures (MT; �C) for exon
5 amplicons from each lemur

species and M/L opsin genotype

Species Genotype Color vision Opsin nind. Mean MT ± SD Range

Eulemur rubriventer Homozygote Dichromat L 8 85.56 ± 0.14 85.35–85.83

Eulemur rufifrons Homozygote Dichromat M 14 86.09 ± 0.66 85.53–87.58

Hapalemur aureus Homozygote Dichromat L 5 85.72 ± 0.06 85.60–85.83

Lemur catta Homozygote Dichromat M 6 86.12 ± 0.12 85.85–86.33

Prolemur simus Homozygote Dichromat L 3 85.71 ± 0.02 85.67–85.75

Propithecus diadema Homozygote Dichromat L 2 86.09 ± 0.06 86.05–86.13

Homozygote Dichromat M 1 86.75 N/A

Heterozygote Trichromat L 3 86.12 ± 0.14 86.02–86.28

M 86.68 ± 0.21 86.53–86.92

Propithecus edwardsi Homozygote Dichromat L 7 85.94 ± 0.15 85.73–86.52

Homozygotea Dichromat L 12 86.04 ± 0.11 85.78–86.27

Homozygote Dichromat M 1 86.51 ± 0.03 86.48–86.53

Heterozygote Trichromat L 4 85.96 ± 0.11 85.90–86.32

M 86.56 ± 0.12 86.45–86.90

Heterozygotea Trichromat L 1 86.20 ± 0.08 86.12–86.27

M 86.82 ± 0.05 86.78–86.87

Propithecus verreauxi Homozygote Dichromat M 8 86.48 ± 0.09 86.28–86.65

Varecia variegata Homozygote Dichromat L 4 85.83 ± 0.12 85.67–86.07

Homozygote Dichromat M 4 86.30 ± 0.06 86.20–86.40

Heterozygote Trichromat L 5 85.80 ± 0.12 85.45–85.95

M 86.40 ± 0.12 86.13–86.60

Variance and range values include replicates
a Denotes samples derived from fecal DNA
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reaction compared to Qiagen HotStarTaq Master Mix),

post-PCR processes can lead to additional costs ranging

from hundreds to thousands of US dollars depending on the

scale of the study (e.g., sequencing costs for 100 individ-

uals at $5/read is *$1000).

The utility of HRMA extends beyond studies of lemur

color vision. The method could be useful for identifying

color vision genotypes in polymorphic platyrrhines, and

may also allow rapid and inexpensive screening for rare

color vision variants in catarrhine populations using gene

copy-specific primers (Vossen et al. 2009).

Finally, applications of this method may extend to other

SNV genotyping studies in primates, such as identifying

variation at loci associated with pathogen resistance [e.g.,

FY/DARC (Tung et al. 2009)], or screening for variation in

dietary proteins [e.g., APOE (McIntosh et al. 2012)] and

taste receptors [e.g., TAS2R38 (Wooding et al. 2006)].

HRMA has also been successfully used for species iden-

tification (Ramón-Laca et al. 2014) and microsatellite

analysis (Thomsen et al. 2012) in other taxa. Thus, the

approach we describe here has the potential for broad

application in genetic studies of primate populations.
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