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1  | INTRODUC TION

Geophagy, the intentional consumption of soil, is well documented 
in the mammalian, avian, and reptilian orders (e.g., Gilardi, Duffey, 
Munn & Tell, 1999; Hladik & Gueguen, 1974; Klaus & Schmid, 1998; 
Sokol, 1971). In almost all reported cases, animals are highly selec‐
tive in the soils consumed, frequenting specific consumption sites 

that may even be outside of their typical home range (Best, Joseph & 
Goldizen, 2013; Pages, Lloyd & Suarez, 2005; Wiles & Weeks, 1986) 
and selecting particular soil horizons at feeding sites (Abrahams, 
1999; Oates, 1978; Pages et al., 2005). Among wild primates, geo‐
phagy has been well‐studied in Neotropical primates (Ferrari, Veiga 
& Urbani, 2008; Izawa, 1993), Old World monkeys (Mahaney, Milner 
& Sanmugadas, 1997; Oates, 1978; Wakibara et al., 2001), and great 
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apes (Mahaney, Hancock, Aufreiter & Huffman, 1996; Mahaney, 
Hancock, Aufreiter, Milner & Voros, 2016; Mahaney, Watts & 
Hancock, 1990), but remains poorly studied in Madagascar's lemurs 
(but see Ganzhorn, 1987; Norscia, Carrai, Ceccanti & Borgognini 
Tarli, 2005; Semel, 2015). A recent review on primate geophagy by 
Pebsworth, Huffman, Lambert and Young (2019) found 44 studies 
describing lemur geophagy, of which only five directly analyzed 
consumed soils. While most researchers agree that geophagy is 
typically an adaptive behavior, causes for geophagy remain poorly 
understood (Krishnamani & Mahaney, 2000; Pebsworth et al., 2019).

The main (nonexclusive) hypotheses for geophagy are the pro‐
tection and supplementation hypotheses, as well as the nonadap‐
tive hypothesis (Table 1). The protection hypothesis suggests that 
geophagy can alleviate symptoms of gastrointestinal distress (e.g., 
Adams, Rehg & Watsa, 2017; Davies & Baillie, 1988; Ferrari et al., 
2008; Mahaney et al., 1990; Oates, 1978; Setz, Enzweiler, Solferini, 
Amêndola & Berton, 1999; Wakibara et al., 2001) and protect con‐
sumers against parasites and pathogens (e.g., Klein, Fröhlich & Krief, 
2008; Knezevich, 1998; Mahaney & Krishnamani, 2003). The supple‐
mentation hypothesis suggests that geophagy supplements essen‐
tial minerals that are lacking in the diet (e.g., Heymann & Hartmann, 
1991; Monaco et al., 2019; Reynolds et al., 2015). The nonadaptive 
hypothesis merely states that geophagy provides no physiological 
benefits, with hedonic sensation (Hladik & Gueguen, 1974; Voros 
et al., 2001) and culture or tradition (Mahaney et al., 1990) being 
the primary explanations for the behavior. However, very few stud‐
ies have examined geophagic behavior within a population where 
study groups exist in habitats of significantly different quality (geo‐
graphically or temporally), despite the likelihood that primates would 
alter soil consumption patterns to mediate dietary differences re‐
sulting from these differences. Of those who have, Reynolds et al. 
(2015) found evidence that chimpanzees consumed soil more fre‐
quently after the removal of forest palms that previously provided 
an important sodium source and Mahaney (1993) documented that 

primates may prefer to take advantage of soils exposed by recent 
disturbance.

Habitat disturbance affects primate forage quality, as forest deg‐
radation reduces canopy cover, changes ambient forest tempera‐
ture, and lowers native species diversity (Johns, 1986, 1992; Johns 
& Skorupa, 1987; Rice, Gullison & Reid, 1997). Soil nutrients and 
properties also are impacted by these factors (Kasenene, 1987; 
Schoenholtz, Van Miegroet & Burger, 2000; Struhsaker, 1997) as 
they increase precipitation reaching the forest floor (Kreutzweiser, 
Hazlett & Gunn, 2008; Powers et al., 2009) and decomposition and 
soil nutrient and mineral leaching rates (Lehman & Schroth, 2003). 
As such factors act in concert to affect populations’ behavioral ecol‐
ogy, analyses of geophagy will be best understood when presented 
within a greater ecological context. Our study provides a natural ex‐
periment with which to examine the interactions between habitat 
disturbance, soil properties, and soil consumption within a rain for‐
est‐dwelling primate species.

Milne‐Edwards’ sifakas (Propithecus edwardsi) are the largest le‐
murs in Madagascar's southeastern rain forests (King et al., 2011; 
Wright, 1995). Madagascar has experienced high levels of habitat 
disturbance, fragmentation, and loss (Brown & Gurevitch, 2004; 
Vieilledent et al., 2018). Sifaka populations living in selectively 
logged and unlogged areas of Ranomafana National Park (RNP) have 
significant differences in their diet and potential nutrient intake 
(Figure 1; Arrigo‐Nelson, 2006). Annually, sifakas living in logged for‐
est consumed 16% less fruits/seeds than animals in unlogged forest. 
This difference is most significant during the austral winter months, 
when animals in unlogged forest spend up to 26% more time feeding 
on fruits/seeds than sifakas living in logged forest (Arrigo‐Nelson, 
2006). Given the nutritional differences between fruits, seeds, 
and leaves (e.g., Altmann, Post & Klein, 1987; Arrigo‐Nelson, 2006, 
Donati et al., 2017; Ganzhorn et al., 2017; National Research Council 
2003), sifaka diets in logged forest likely contain not only fewer sug‐
ars and fats, but also fewer plant secondary metabolites (PSMs) from 

TA B L E  1   Frequency of feeding, identity of animals feeding, and soil types consumed, as predicted by each proposed hypothesis for 
geophagic behavior

Hypothesis Corollary

Geophagy

Frequency Feeders Soil type

Protective Digestive function Frequent or 
predictable

All Higher pH than stomach 
contents

Toxin neutralization Frequenta  All that consume toxins Contain kaolin or other absorp‐
tive properties

Self‐medication Periodica  Those infected or showing 
symptoms

Contain kaolin or other absorp‐
tive properties 

Ingest cellulose digesting bacteria Rare to frequent All Taken from termite mounds

Dietary 
Supplementation

Dietary supplementation Rare or 
occasional

All or those with increased 
nutritional needs

Contain nutrient(s) absent from 
diet or present in low quantities

Nonadaptive Famine food Rare All Nutrient‐rich soils

Cultural adaptation/tradition Rare to frequent Possibly all Variable

Tactile sensations/olfactory attraction Rare to frequent All Variable

amay occur only seasonally. 
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seeds than those in unlogged forest due to the lower proportion of 
fruits and seeds in their diet. PSMs, such as toxins (e.g., alkaloids) 
and protein inhibitors (e.g., tannins), may cause animals physiological 
harm or inhibit protein intake—costs that must be weighed against 
the nutritional benefits of a particular food item (Glander, 1982). As 
nutritional differences are most significant during the winter (lean 
season and sifaka birth/early lactation season), this combination of 
high‐energy demands, a lack of high‐energy foods, and PSM preva‐
lence could severely impact sifakas in logged forest.

Sifaka life history and diet have been studied over 30 years in 
RNP (Arrigo‐Nelson, 2006; Hemingway, 1995, 1998; King et al., 
2011; Morelli, King, Pochron & Wright, 2009; Wright, 1995), and 
based on these observations, it is feasible that sifaka geophagy could 
conform to any of the three main geophagy hypotheses (Table 1). By 
closely examining geophagy patterns among sifakas, this study will 
improve our understanding of the root cause(s) of soil consumption 

within this species and contribute to the general understanding of 
this phenomenon, not just among lemurs, but among all primates. 
Further, as differences exist in the feeding ecology of sifakas living 
within selectively logged and unlogged forest, this study also pro‐
vides an opportunity to explore the impact of habitat disturbance 
on the sifakas of RNP and the ways that geophagy may help animals 
persist in logged habitats.

2  | METHODS

2.1 | Study sites

Ranomafana National Park (RNP) encompasses 43,500 ha of rain 
forest in southeastern Madagascar (21°02’–21°25'S and 47°18’–
47°37'E). Elevation ranges from 500 m to 1500 m, and habitat var‐
ies with elevation, changing from lowland to montane rain forest. 

F I G U R E  1   Monthly variation in (a) 
fruit and (b) leaf consumption by sifakas 
in undisturbed and disturbed forest, 
throughout the study period
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The region's climate is both seasonally and interannually variable 
(Eronen, 2017; Wright et al., 2012). Rainfall averages 3,400 mm per 
year, though half of this total fell in just 3 months (January–March) 
in 2003, and temperatures ranged between 6.5°C and 30°C dur‐
ing this same period (Arrigo‐Nelson, 2006). This study focuses on 
sifakas inhabiting two of RNP's trail systems, which were selected 
for their past logging histories (Figure S1). The logged forest site, 
Talatakely, is 850 m to 1150 m asl, contains a trail network over 
30 km in length, and encompasses 1.5 km2. Of the established trail 
systems, this site has been subjected to the greatest level of habitat 
disturbance, including the presence of a small settlement and market 
from the early 1930s to 1947 and intensive “selective” logging by 
timber exploiters from 1986 to 1989 (Wright, 1997; Wright et al., 
2012). During peak exploitation, approximately 300 hardwood trees 
were hand‐removed from the area daily, including several key sifaka 
food species. The unlogged forest site, Valohoaka, is 8.5 km south‐
east of Talatakely. This system is 900 m to 1200 m asl, consists of 
21.5 km of trails, and encompasses 1.41 km2. This site has been im‐
pacted by neither human settlements nor selective logging (Balko & 
Underwood, 2005).

2.2 | Study species and groups

Milne‐Edwards’ sifakas are diurnal, sexually monomorphic, and the 
largest lemur species in RNP, with adult body weights averaging 
5.8 kg (Figure S2; Glander, Wright, Daniels & Merenlender, 1992; 
King et al., 2011). Social groups range from 2 to 9 animals (Pochron 
& Wright, 2003) and maintain 30 to 55 ha home ranges (Gerber, 
Arrigo‐Nelson, Karpanty, Kotschwar & Wright, 2012). Their diet 
consists of a combination of leaves, whole fruits, and seeds, and var‐
ies seasonally with animals preferentially feeding on available fruits 
and seeds (Arrigo‐Nelson, 2005, 2006; Hemingway, 1998; Wright, 
1995). Flowers and insect larvae seasonally supplement diets. 
Drinking water has never been observed in over 20 years of sifaka 
research at this site. Data presented here have been collected from 
seven sifaka groups, four from the logged forest (18 individuals) and 
three from the unlogged forest (11 individuals) that were observed 
from December 2002 to November 2003 (Table S1). The simultane‐
ous study of these seven groups enables behavioral and ecological 
comparisons between sites with differing levels of habitat distur‐
bance, while controlling for within‐site variation.

2.3 | Data collection

Soil samples were collected in two contexts: “consumed” and “con‐
trol.” Consumed soils were collected during sifaka observations con‐
ducted from December 2002 through November 2003. Each sifaka 
group was followed from dawn to dusk for four or five consecutive 
days each month by a three‐member team (some combination of 
Arrigo‐Nelson and the project's six Malagasy research technicians). 
A total of 3,397 observation hours were logged (393–526 hr col‐
lected per group). During group follows, all geophagy events and 
locations were documented. Following each feeding event, a soil 
sample (approximately 150 g wet weight) from the feeding location 
was collected in a cloth forestry bag, dried in a drying oven at 40°C 
for 2 weeks, and then stored in a Ziploc® bag containing Dry Rite® 
desiccant until nutrient/mineral analyses were conducted. Samples 
contained no sizeable debris (i.e., roots, leaves, and large stones). 
Control soils were collected from the study's established botanical 
plots in November 2003. Six botanical plots were established within 
each study group's home range following the stratified random 
sampling methodology of Mueller‐Dombois and Ellenberg (1974), in 
which plots were placed randomly within each group's home range 
but in proportional distribution to the habitat types found therein 
(Hsu, Agoramoorthy & Lin, 2001; Müller, Ahl & Hartmann, 1997). 
Within each botanical plot, 125 cm3 of soil was collected from a ho‐
mogenized core sample of the first 25 cm of soil from the first quad‐
rant of each plot. Roots, leaf litter, and the O horizon were removed, 
as they were not consumed by the sifakas. Samples then were dried 
and preserved as described above.

2.4 | Laboratory analyses

Soil properties were determined for each sample using two in‐
dependent analyses: a standard soil analysis and a soluble ion 
analysis by the Soil and Plant Testing Laboratory (University of 
Massachusetts‐Amherst) in 2004. Soil analyses were conducted 
using Morgan extraction, a standard acid‐extraction method used in 
soil sciences (1:2, soil:water extraction; Lunt, Swanson & Jacobson, 
1950; NEC‐67, 1995) to quantitatively determine extractable micro‐
nutrient, heavy metal, and organic matter content, and pH values. 
Soluble ion analyses were used to determine the soluble salt con‐
tent of the soils. As the nature of these analyses differs, the tests 

F I G U R E  2   Monthly variation in 
geophagy rate by sifaka in undisturbed 
and disturbed forest, throughout the 
study period. No significant differences 
were found among months, between 
forest types



     |  5SEMEL Et aL.

are considered complementary and can be interpreted in concert to 
determine soil properties and differences between control soils and 
those consumed by sifakas (S. Bodine, pers. comm.).

2.5 | Statistical analyses

As all weaned members of a social group routinely participated in 
each geophagic event, the consumption event itself was taken as 
the sampling unit (not the soil feeding bouts of individual group 
members). Due to unequal sample sizes, non‐normal distribution of 
means, and nonindependence between consumed and control soils at 
each site, a combination of parametric and nonparametric analyses 
was used (Sokal & Rohlf, 2012). Kruskal–Wallis tests were employed 
with Dunn–Bonferroni post hoc analyses to explore differences in 
soil texture and properties within and between sites. Soil texture 
values (%) were arcsine‐transformed prior to analysis. Paired sample 
t‐tests were used to investigate differences in the rate of geophagy 
within and between sites. Pearson correlations were used to deter‐
mine the relationship between geophagy and fruits/seeds feeding 
within each study site, across the study period, and Fisher's com‐
bined probability test was used to test the overall significance of this 
relationship across study sites. Probabilities were combined using 
the	formula:	T	=	−2_ln(p),	where	T	is	chi‐square	distributed	with	four	
degrees of freedom (df = 2n; n equals the number of data sets in‐
cluded). All analyses were conducted using SPSS v. 22.

3  | RESULTS

3.1 | Geophagic behavior

Overall, geophagy was observed 102 times, with 44 events (0.032 
events/hr or 0.317 events/day) occurring within unlogged forest and 
58 events (0.028 events/hr or 0.317 events/day) occurring within 
logged forest. The ingestion method was stereotypical across all 
individuals at both sites as follows: Geophagic events followed the 
intentional/directed travel of a social group to a location when no 
other reason for travel to this site or away from their previous lo‐
cation could be discerned. During each event, all weaned individu‐
als of both sexes consumed soil. Group members descended to the 
ground sequentially. Adult females led and other group members 
followed one‐by‐one. Adult males went last. Once on the ground, 
animals consumed two to three mouthfuls of soil from the selected 
area using only their mouths before immediately leaving the feeding 
site. While waiting to feed, animals rested low in the trees (<10 m), 
gave frequent contact calls, and were noticeably vigilant. After all 
individuals had fed, the group traveled rapidly from the site before 
engaging in any further feeding or resting behaviors.

Soils were exclusively consumed from sites lacking an A hori‐
zon (dark, humus layer containing leaf litter, decayed materials, and 
other organics) where the more compact B horizon (lighter/orange 
in color) soils had been previously exposed (i.e., due to a treefall or 
cliff erosion) and were free of debris (e.g., roots, leaves, and stones). 
Throughout the course of this study, 36 geophagy sites were used 

within the unlogged forest and 49 sites were used in the logged for‐
est. On average, these sites were reused 1.33 times within the un‐
logged forest and 1.40 times within the logged forest, with 37.50% 
of sites visited more than once (maximum four times) within the un‐
logged forest and 52.83% of sites revisited (maximum three times) 
within the logged forest.

When soil consumption rates were compared between sites, no 
difference in geophagy rate was found (p = .087) within any study 
month (n = 12; Figure 2). Geophagic behavior was significantly 
correlated with fruit/seed consumption within the unlogged for‐
est (Pearson's r = .584, p = .046) and trended toward a correlation 
within the logged forest (Pearson's r = .544, p = .068) as well. Fisher's 
combined probability suggested a highly significant relationship be‐
tween geophagic behavior and fruit/seed consumption across sites 
(T = 11.53, p < .025; Figure 3).

F I G U R E  3   Monthly geophagy rate and proportion of diet 
consisting of fruit/seeds for sifakas living in (a) the undisturbed and 
(b) the disturbed forest study sites. Fisher's combined probability 
test reveals that across sites, geophagy and fruit feeding are 
significantly correlated (p < .025)
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3.2 | Soil properties and chemistry

Soil properties differed significantly between unlogged and logged 
control samples for only a few measures (Table 2). Unlogged forest 
soils contained significantly higher levels of soluble salts (p = .009) 
and standard nitrate (p < .001). Logged forest soils exhibited higher 
levels of cadmium (p = .004) and lead (p = .008) and tended to have 
a higher pH (p = .065, n.s.) than unlogged forest soils.

When comparing consumed and control soil chemistry within 
sites, several differences were found (Table 2). In logged forest, 
consumed soils had a significantly higher clay (p = .008) and chro‐
mium (p = .027) content than control soils. Within unlogged forest, 
consumed soils contained significantly more cadmium (p < .001), 
lead (p = .003), and phosphorus (p = .019), and significantly less 
nitrate (p = .005) than control soils. Organic matter tended to be 
lower as well (p = .050, n.s.). At the logged forest site, consumed 
soils contained significantly less sand (p = .027) and standard potas‐
sium (p = .020) than control soils. Additionally, when the consumed 
soils were compared to control soils, several patterns emerged that 
were common to both sites. Consumed soils consistently (1) had a 
trend toward lower organic matter content (Valo: p = .050, n.s., Tala: 
p = .021); (2) contained significantly less zinc (both sites: p < .001) 
and tended to contain less magnesium (Valo: p = .050, n.s., Tala: 
p < .001); and (3) contained significantly more soluble manganese 
ions (Valo: p = .014, Tala: p = .027) and significantly fewer soluble 
zinc ions (both sites: p < .001) than control sites.

Between sites, consumed soils from the logged forest had signifi‐
cantly higher sand (p = .002) and silt (p = .031) content than those in 
the unlogged forest. Consumed soil clay content also tended to be 
different between sites (p = .085, n.s.). Consumed soil comparisons 
differed significantly between sites for nearly half of the measured 
micronutrients (Table 2).

4  | DISCUSSION

Here, we present one of the first systematic studies of soil con‐
sumption in wild lemurs and investigate the adaptive significance 
of geophagy by Milne‐Edwards’ sifakas under natural experimental 
conditions across a full seasonal spectrum using robust sample sizes. 
These conditions, along with control samples, are often lacking in 
anecdotal geophagy reports. Comparative studies of geophagy be‐
tween populations facing dissimilar habitat qualities and nutritional 
landscapes provide a noninvasive and non‐reductionist approach to 
explain the function of soil within primate diets. In this study, control 
soil samples collected within animal home ranges enable the charac‐
terization of soils across disturbance regimes and a critical investiga‐
tion of preferred soil properties.

4.1 | General findings

Previous deforestation response studies suggest soil nitrates de‐
crease due to vegetation loss and erosion, which can reduce soil  
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acidity for years or decades until regeneration is achieved (Li et al., 
2013; Reiners, Bouwman, Parsons & Keller, 1994; Werner, 1984). 
This study conforms to this trend with soil containing lower nitrates 
and higher pH in logged versus unlogged forest sites. Although sev‐
eral important minerals also were found in lower concentrations in 
logged verses unlogged forest soils, few differences were statisti‐
cally significant (Table 2). While tropical forests typically are infertile 
and poor in minerals (Li et al., 2013; Werner, 1984), we expected 
to see many notable differences in soil properties between the two 
sites. Selective logging, rather than a total clear‐cut, may have buff‐
ered the logged site against intense mineral leaching. Alternatively, 
soil recovery may have occurred rapidly due to the presence of the 
contiguous forest trees lacking value to the commercial logging 
trade. Either scenario is good news for soil conservation in RNP's 
logged areas, and the latter scenario may provide limited support 
for the use of selective logging to mitigate damage in regions where 
cutting is scheduled to occur.

Sifaka behavior at geophagy sites suggests that the animals may 
feel vulnerable to terrestrial predators (e.g., fossas) while consum‐
ing soil. Like spider and howler monkeys visiting mineral licks (Link, 
Galvis, Fleming & Di Fiore, 2011), sifakas exhibited increased vig‐
ilance while at geophagy sites. Though sifakas did not spend long 
periods at sites prior to descending to the ground, they did take 
turns feeding and maintained regular contact calls at geophagy sites. 
While small exposed soil sites may have prevented communal feed‐
ing bouts, turn taking was ubiquitous and likely enabled consumers 
to benefit from vigilant group members.

When our results are examined in light of the three major hy‐
potheses for geophagy, we find the following:

4.2 | Protection hypothesis

The protection hypothesis may be supported by any number of sev‐
eral nonexclusive corollaries explaining the function of soil in the 
diet including defense against plant secondary metabolites (PSMs), 
adjustment of gut pH, and defense against parasites and pathogens 
(Table 1; Krishnamani & Mahaney, 2000; Pebsworth et al., 2019).

The capacity for consumed clays to neutralize various PSMs has 
been well supported across the geophagy literature (Gilardi et al., 
1999; Houston, Gilardi & Hall, 2001; Setz et al., 1999; Wakibara 
et al., 2001). PSMs are compounds that are secondary to a plant's 
cellular function, but that discourage predation by herbivores by ei‐
ther negatively impacting their physiology (e.g., toxins) or inhibiting 
protein absorption (e.g., tannins; Glander, 1982). Clay minerals from 
consumed soils are known to increase mucous production, thereby 
reducing the permeability of the intestinal lining and/or to bind to 
PSMs directly to facilitate their excretion (reviewed in Young, 2010). 
While this function was first attributed to folivores dealing with high 
toxin concentrations in mature leaves (Krishnamani & Mahaney, 
2000), more recent reviews of geophagy suggest a strong link to 
frugivory due to toxic seeds (Ferrari et al., 2008; Pebsworth et al., 
2019). We found that soil consumption significantly correlated with 
fruit/seed consumption in unlogged forests and to a lesser degree in 

logged forests, with a high correlation between fruit/seed consump‐
tion and geophagy overall (Figure 3).

Sifakas are known seed predators, sometimes discarding fruit 
pulp to feed exclusively on seeds (Dew & Wright, 1998). In Mantadia 
National Park, more granivorous diademed sifakas consumed soil twice 
as often as more folivorous indris, strongly implicating detoxification as 
the function of geophagy (Powzyk & Mowry, 2003). Seeds consumed 
by diademed sifakas were rich in alkaloids (e.g., from the genus Solanum, 
also consumed by Milne‐Edwards’ sifakas (Arrigo‐Nelson, 2006)), while 
foods consumed by sympatric indri were not. Additionally, Semel (2015) 
provided evidence that diademed sifakas were more likely to consume 
soil within 12‐ and 30‐hr periods (based on sifaka gastric emptying and 
oro‐rectal transit times) with higher food toxin indices than those with 
lower indices. Norscia et al. (2005) also suggested detoxification as a 
likely explanation for geophagy in Verreaux's sifakas.

Soils also may help to adjust gut pH. Like most animals that en‐
gage in geophagy, sifakas at both sites consistently avoided soil or‐
ganic matter (Table 2; Klaus & Schmid, 1998). Consequently, sifakas 
consistently chose less acidic soils. Clays typically are thought to be 
the buffering agent (Mahaney et al., 1990; Semel, Irwin, Raharison, 
Chapman & Rothman, 2014; Wakibara et al., 2001). Ruminants and 
ceco‐colic fermenters, such as sifakas, support an array of symbiotic 
bacteria that break down plant materials (e.g., cellulose) through fer‐
mentation (Campbell, Eisemann, Williams & Glenn, 2000; Chivers & 
Langer, 1994; Lambert, 1998). These bacteria function best in more 
neutral environments than the acidic conditions of the gastrointesti‐
nal tract. Clays in consumed soils may act to reduce gut pH, creating 
a more favorable fermentation environment (Davies & Baillie, 1988; 
Oates, 1978; Wakibara et al., 2001). Logged forest consumed soils 
had significantly more clay than control soils, but this was not the 
case in unlogged forest. Consumed soils between sites were not sig‐
nificantly different from one another.

Sifaka feeding patterns and lack of sex and age bias in soil 
consumption also lend support to geophagy as a means to allevi‐
ate toxins or to adjust gut pH. Geophagy is correlated with fruit/
seed consumption at both sites. Soil was consumed seasonally, 
with sifakas feeding on soil frequently during peak fruiting season 
(December–May) and decreasing consumption when fruit/seed con‐
sumption was at its lowest (June–September; Figure 3).

Geophagy also may help primates to improve their physical con‐
dition by protecting against parasites and pathogens (Huffman & 
Seifu, 1989). Certain clay minerals from consumed soils are known 
to reduce the permeability of the intestinal lining to filter out toxins 
and pathogens and to bind to pathogens directly to facilitate excre‐
tion (reviewed in Young, 2010). Rhesus macaques on Cayo Santiago 
routinely consumed soil, enabling them to avert external symptoms 
of infection, such as diarrhea. This allowed hosts and parasites to 
reach a level of homeostasis in which physical condition, reproduc‐
tive status, and longevity were not compromised (Knezevich, 1998).

Our data did not fully support this corollary of the protection 
hypothesis. Though geophagy was most frequent during seasons 
when parasites are more prevalent (Wright et al., 2009), geophagy 
rates were similar between logged and unlogged forests despite 
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sifakas in more logged habitats having higher endo‐ and ectopara‐
site loads than those in unlogged forest (Bublitz et al., 2015; Wright 
et al., 2009). While we cannot completely reject the role of geoph‐
agy in protecting against sifaka parasites, the toxin alleviation and 
adjustment of gut pH corollaries provide the best support for the 
protective hypothesis.

One potential corollary of the protective hypothesis that we 
were unable to test with our data is the role of geophagy as a pre‐ or 
probiotic. A review by Bisi‐Johnson, Obi and Ekosse (2013) found 
that clays in soil may inhibit certain harmful microbes, while the soil 
itself acts as a source for beneficial gut microbes. This corollary has 
received little attention in the literature and may warrant future ex‐
ploration owing to the complex gut morphology and symbiotic rela‐
tionship between sifakas and their gut flora.

4.3 | Supplementation hypothesis

Dietary supplementation is a well‐accepted explanation for primate 
geophagy (Table S2). While Madagascar's lemurs face unique nutri‐
tional challenges (Donati et al., 2017; Wright, 1999), geophagy pat‐
terns similar to those of other primates persist. Like sifakas, Formosan 
macaques exhibit no age or sex bias in soil consumption and annually 
consume soil from numerous sites (Hsu et al., 2001). Unlike for sifa‐
kas, peak macaque soil consumption occurred at the end of the rainy 
season and continued through the dry season, largely correspond‐
ing to high folivory periods. Because soil consumption was observed 
among sifakas of all ages and of both sexes, it is possible that they 
must consume soil to supplement mineral(s) generally lacking in their 
diets. Of the minerals sampled, only soluble manganese ions were 
significantly higher in soils consumed by sifakas than in control soils 
for both forest types.

Manganese ions are a trace element and biologically necessary 
in small quantities. They are required for bone, cartilage, skin, and 
ligament formation, reproductive and brain function, blood clotting 
and wound healing, and cholesterol, sugars, and insulin metabolism 
(Dreosti, 1992; Medline Plus 2016). Several enzymes activated by 
manganese contribute to the metabolism of carbohydrates, amino 
acids, and cholesterol (Medline Plus 2016). Sifakas may not be able to 
ingest enough manganese in their regular diet. Humans only absorb 
3–9% of consumed manganese (Sandstöm, 1992), while some her‐
bivores only absorb 1% of consumed manganese (cf. Spears, 2003).

The absence of mineral analyses in studies of the Milne‐Edwards’ 
sifaka diet makes it impossible to test whether or not these sifakas 
have a manganese deficiency. However, while related diademed si‐
fakas living in similar forest habitats failed to meet National Research 
Council recommendations for calcium, copper, iron, sodium, phos‐
phorus, and zinc, they exceeded potassium, magnesium, and man‐
ganese recommendations (Irwin, Raharison, Chapman, Junge & 
Rothman, 2017).

We also observed site‐specific preferences unrelated to under‐
lying soil mineral differences. Consumed soils from logged forest had 
less potassium than control logged forest soils and consumed un‐
logged forest soils. Unlogged forest consumed soils contained more 

nitrate, cadmium, lead, and phosphorus than control samples, but 
there was no difference in consumed soils between the two forest 
types. Additionally, logged forest consumed soils were consistently 
lower in minerals than unlogged forest consumed soils. These incon‐
sistent patterns could be due to food item mineral availability differ‐
ing in logged verses unlogged forests. However, diademed sifakas 
living in fragmented and contiguous forests exhibited no difference 
in absolute mineral intake despite differences in overall dry matter 
intake (Irwin et al., 2017).

While it is possible that sifakas are consuming soil to obtain man‐
ganese ions or some mineral for which we did not sample, several 
studies have found that consumed soil mineral bioavailability often 
is low (Diamond, Bishop & Gilardi, 1999; Pebsworth et al., 2013), 
and Madagascar's rain forest soils are generally recognized as being 
nutrient‐poor (Johnson, 2002). While we cannot outright reject 
the supplementation hypothesis until the mineral content of the si‐
faka diet and mineral bioavailability within consumed soils is deter‐
mined, support for this hypothesis is weak. Future research would 
benefit from nutritional analyses of food items consumed and their 
bioavailability.

4.4 | Nonadaptive hypothesis

Consistent geophagy rates over space and time and the perceived 
risk at geophagy sites emphasize the physiological significance of 
this phenomenon. Combined with the impact that habitat distur‐
bance has had on these sifakas’ feeding patterns (Arrigo‐Nelson, 
2005, 2006; Arrigo‐Nelson & Randriamahaleo, 2006), it is very likely 
that sifakas living at both study sites are selecting and consuming 
soils to serve some adaptive purpose.

Furthermore, sifaka weight and body condition data (Glander 
et al., 1992; King et al., 2011) provide no support for soil as a 
famine food (Aufreiter, Hancock, Mahaney, Stambolic‐Robb & 
Sanmugadas, 1997). Geophagy as a cultural tradition (Hunter & 
De Kleine, 1984; Johns & Duquette, 1991; Mahaney et al., 1990) 
or a tactile or olfactory stimulator (Hladik & Gueguen, 1974, cf. 
Krishnamani & Mahaney, 2000) could not be assessed with these 
data. However, the stereotypical nature of the geophagic events 
observed does suggest an instinctual basis for geophagy and sup‐
ports the assertion that sifaka geophagy is an adaptive behavior.

In conclusion, geophagy need not have mutually exclusive func‐
tions and may improve animal health in multiple ways. Our data sug‐
gest that geophagy by Milne‐Edwards’ sifakas is driven primarily by 
the need to detoxify consumed seeds and/or to adjust gut pH. Soil 
also may supplement sifaka diets with important minerals, though 
this is unlikely and further tests on the bioavailability of consumed 
minerals should be conducted (Pebsworth et al., 2013). Conformation 
to the protection hypothesis is supported by the fact that geoph‐
agy rates were very similar across disturbance regimes, indicating 
that soils serve one or many important biological functions. Further 
research is needed on the sifaka diet (e.g., nutrient and secondary 
compound consumption) and digestive system (e.g., sifaka gut pH); 
however, our study suggests that geophagy may be important in 
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maintaining health and wellness, especially in areas where logging, 
or other forms of habitat disturbance, has been experienced.
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